Answer:
Step-by-step explanation:
Represent the length of one side of the base be s and the height by h. Then the volume of the box is V = s^2*h; this is to be maximized.
The constraints are as follows: 2s + h = 114 in. Solving for h, we get 114 - 2s = h.
Substituting 114 - 2s for h in the volume formula, we obtain:
V = s^2*(114 - 2s), or V = 114s^2 - 2s^3, or V = 2*(s^2)(57 - s)
This is to be maximized. To accomplish this, find the first derivative of this formula for V, set the result equal to 0 and solve for s:
dV
----- = 2[(s^2)(-1) + (57 - s)(2s)] = 0 = 2s^2(-1) + 114s - 2s^2
ds
Simplifying this, we get dV/ds = -4s^2 + 114s = 0. Then either s = 28.5 or s = 0.
Then the area of the base is 28.5^2 in^2 and the height is 114 - 2(28.5) = 57 in
and the volume is V = s^2(h) = 46,298.25 in^3
Answer:
3 <u>> </u>x
Step-by-step explanation:
(Sorry if im wrong)
Divide both sides by 6
18/6 <u>></u> 6x/6
3 <u>></u> x
Answer:
16 runs
Step-by-step explanation:
16-6=10
.15 cents. You do the money divided by the ounces or weight.
Answer:
Roots are not real
Step-by-step explanation:
To prove : The roots of x^2 +(1-k)x+k-3=0x
2
+(1−k)x+k−3=0 are real for all real values of k ?
Solution :
The roots are real when discriminant is greater than equal to zero.
i.e. b^2-4ac\geq 0b
2
−4ac≥0
The quadratic equation x^2 +(1-k)x+k-3=0x
2
+(1−k)x+k−3=0
Here, a=1, b=1-k and c=k-3
Substitute the values,
We find the discriminant,
D=(1-k)^2-4(1)(k-3)D=(1−k)
2
−4(1)(k−3)
D=1+k^2-2k-4k+12D=1+k
2
−2k−4k+12
D=k^2-6k+13D=k
2
−6k+13
D=(k-(3+2i))(k+(3+2i))D=(k−(3+2i))(k+(3+2i))
For roots to be real, D ≥ 0
But the roots are imaginary therefore the roots of the given equation are not real for any value of k.