Answer:
8√5 units.
Step-by-step explanation:
See the diagram in the coordinate plane attached.
A rhombus has four equal sides and to find the perimeter of the rhombus we have to measure any of the sides of the figure of the rhombus.
The coordinates of the topmost point are (-1,-1) and that of the rightmost point are (3,-3).
Therefore, side length of the rhombus will be
units.
So, the perimeter of the rhombus will be (4 × 2√5) units = 8√5 units. (Answer)
The distance between two points
and
on a coordinate plane is given by
Answer:
b = 15.75
Step-by-step explanation:
Lets find the interception points of the curves
36 x² = 25
x² = 25/36 = 0.69444
|x| = √(25/36) = 5/6
thus the interception points are 5/6 and -5/6. By evaluating in 0, we can conclude that the curve y=25 is above the other curve and b should be between 0 and 25 (note that 0 is the smallest value of 36 x²).
The area of the bounded region is given by the integral

The whole region has an area of 250/9. We need b such as the area of the region below the curve y =b and above y=36x^2 is 125/9. The region would be bounded by the points z and -z, for certain z (this is for the symmetry). Also for the symmetry, this region can be splitted into 2 regions with equal area: between -z and 0, and between 0 and z. The area between 0 and z should be 125/18. Note that 36 z² = b, then z = √b/6.

125/18 = b^{1.5}/9
b = (62.5²)^{1/3} = 15.75
7:05, 7:15 , and 7:12 i hope this helps
The answer is 28. My answer is correct. 7, 14& 21 can't be the LCM son the answer should be 28.
Answer:
Below
Step-by-step explanation:
● x^2 + 11x + 121/4 = 125/4
Substract 125/4 from both sides:
● x^2 + 11x + 121/4-125/4= 125/4 -125/4
● x^2 + 11x - (-4/4) = 0
● x^2 +11x -(-1) = 0
● x^2 + 11 x + 1 = 0
This is a quadratic equation so we will use the determinanant (b^2-4ac)
● a = 1
● b = 11
● c = 1
● b^2-4ac = 11^2-4*1*1 = 117
So this equation has two solutions:
● x = (-b -/+ √(b^2-4ac) ) / 2a
● x = (-11 -/+ √(117) ) / 2
● x = (-11 -/+ 3√(13))/ 2
● x = -0.91 or x = -10.9
Round to the nearest unit
● x = -1 or x = -11
The solutions are { -1,-11}