For starters, create an equation to show David's earnings. We can do this using Danielle's as a basis, which is set up as y=(# of hours)x+(bonus). This gives us y=12x+80. Now, as we need both their ys to be equal, we just set both equations equal to each other, making 15x+50=12x+80. Now, we solve for x, starting with 15x+50=12x+80, subtracting 12x from both sides to get 3x+50=80, subtracting 50 from both sides to get 3x=30, and dividing three from both sides to get x=10. To check, we just plug in our answer to both equations and see if the ys match up. With Danielle's equation, we get y=15(10)+50=150+50=200 and with David's equation, we get y=12(10)+80=120+80=200, proving that our answer is correct.
Answer:
Your answer would be A: "college savings account."
Step-by-step explanation:
Got it right on edge.
There would be 2034 students competing in 2012.
We can write a simple equation to find this answer. Let X, be the number of students starting in 2012. Then, we multiply by 0.9 and 1.1 to get to 2014. To work backwards, just divide by 1.1, then by 0.9.
2014 / 1.1 / 0.9 = 2034
<h2>Hello!</h2>
The answer is:
C. Cosine is negative in Quadrant III
<h2>
Why?</h2>
Let's discard each given option in order to find the correct:
A. Tangent is negative in Quadrant I: It's false, all functions are positive in Quadrant I (0° to 90°).
B. Sine is negative in Quadrant II: It's false, sine is negative in positive in Quadrant II. Sine function is always positive coming from 90° to 180°.
C. Cosine is negative in Quadrant III. It's true, cosine and sine functions are negative in Quadrant III (180° to 270°), meaning that only tangent and cotangent functions will be positive in Quadrant III.
D. Sine is positive in Quadrant IV: It's false, sine is negative in Quadrant IV. Only cosine and secant functions are positive in Quadrant IV (270° to 360°)
Have a nice day!