Answer:
The answer is: both class have the same ratio.
Step-by-step explanation:
Get the ratio of tall to short. Divide Tall by Short:
Jack's class:
18/10 = 1.8 tall one for every short one
Michael's class:
54/30 = 1.8
The ratio is the same!
You can further prove this by multiplying 18 times 3 and getting 54, and 10 times 3 and getting 30.
Hope this Helps!! Have an Awesome Day!! (-:
In scientific notation it would just be 3.06 x 0, it is the same thing as the regular notation.
This question is incomplete, the complete question is;
X and Y are independent Gaussian (Normal) random Variables. X has mean 13.9 and variance 5.2; Y has mean 6.9 and variance 3.8. . (a) Calculate P( W> 10)
Answer:
P( W> 10) is 0.1587
Step-by-step explanation:
Given that;
X ⇒ N( 13.9, 5.2 )
Y ⇒ N( 6.9, 3.8 )
W = X - Y
Therefore
E(W) = E(X) - E(Y)
= 13.9 - 6.9 = 7
Var(W) = Var(X) + Var(Y) -2COV(X.Y)
[ COV(X,Y) = 0 because they are independent]
Var(W) = 5.2 + 3.8 + 0
= 9
Therefore
W ⇒ N( 7, 9 )
so
P( W > 10 )
= 1 - P( W ≤ 10 )
= 1 - P( W-7 /3 ≤ 10-7 /3 )
= 1 - P( Z ≤ 1 ) [ Z = W-7 / 3 ⇒ N(0, 1) ]
from Standard normal distribution table, P( Z ≤ 1 ) = 0.8413
so
1 - P( Z ≤ 1 ) = 1 - 0.8413 = 0.1587
Therefore P( W> 10) is 0.1587
Answer:
The value is ![P(A) = 0.133617](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%200.133617)
Step-by-step explanation:
From the question we are told that
The mean is ![\mu = 7.5](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%207.5)
The standard deviation is ![\sigma = 0.2](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%200.2)
The safest water level is between 7.2 and 7.8
Generally the probability that the selected pool has a pH level that is not considered safe is mathematically represented as
![P(A) = 1 - P(7.2 \le X \le 7.8 )](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%201%20-%20P%287.2%20%5Cle%20X%20%20%5Cle%207.8%20%29)
Here
![P(7.2 < X < 7.8 ) = P(\frac{ 7.2 - \mu }{\sigma } < \frac{X - \mu }{ \sigma }](https://tex.z-dn.net/?f=P%287.2%20%3C%20X%20%20%3C%207.8%20%29%20%3D%20P%28%5Cfrac%7B%207.2%20-%20%5Cmu%20%7D%7B%5Csigma%20%7D%20%3C%20%20%5Cfrac%7BX%20-%20%5Cmu%20%7D%7B%20%5Csigma%20%7D%20%3C%5Cfrac%7B%207.8%20-%20%5Cmu%20%7D%7B%5Csigma%20%7D%20%20%20%29)
Generally ![\frac{X - \mu }{ \sigma } = Z (The \ standardized \ value \ of X )](https://tex.z-dn.net/?f=%5Cfrac%7BX%20-%20%5Cmu%20%7D%7B%20%5Csigma%20%7D%20%3D%20%20Z%20%28The%20%20%5C%20standardized%20%5C%20%20value%20%20%5C%20%20of%20%20X%20%29)
So
=>
From the z-table the probability of (Z < -1.5) and ( Z <1.5) are
![P(Z < 1.5) = 0.93319](https://tex.z-dn.net/?f=P%28Z%20%3C%20%201.5%29%20%3D%20%200.93319)
and
![P(Z < -1.5) = 0.066807](https://tex.z-dn.net/?f=P%28Z%20%3C%20%20-1.5%29%20%3D%20%200.066807)
So
So
![P(A) = 1 - 0.0866383](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%201%20-%200.0866383)
=> ![P(A) = 0.133617](https://tex.z-dn.net/?f=P%28A%29%20%3D%20%200.133617)
Answer:
Your simplified fraction would be 12 6/7 so I’d say *C* because that’s the closest to the simplified fraction
Step-by-step explanation:
im just explain