this is too funny martinezzzzzz13
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
Answer:
The angles do not have the same reference angle.
Step-by-step explanation:
1) Angle 5π / 3 radians:
Convert radians to degrees: 5π/3 × 180° / π = 300°
300° is in the fourth quadrant
The reference angle for angles in the fourth quadrant is 360° - angle ⇒ 360° - 300° = 60°.
∴ The reference angle for this angle is 60°.
2) Angle 5π / 6 radians:
Convert radians to degrees: 5π/6 × 180° / π = 150°
150° is in the second quadrant
The reference angle for angles in the second quadrant is 180° - angle ⇒ 180° - 150° = 30°.
∴ The reference angle for this angle is 30°.
3) Conclusion:
Since the reference angles are different, the tangent ratios have different values.
tan (5π/3) = - tan(60°) = - √3
tan (5π/6) = - tan(30°) = - (√3)/3
Note that the tangent is negative in both second and fourth quadrants.
If correct please give brainliest
<em>Stay safe and healthy</em>
Thank You

<span>
base1= 158.802
</span>

<span>
base2=596.008
the distance travelled = 596.008 - 158.802
= 438 m</span>
The answer is 3 1/3 + 2 1/3 = 5 2/3