Answer: Molarity of
anions in the chemist's solution is 0.0104 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :

where,
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the molarity of solution will be 

As 1 mole of
gives 2 moles of 
Thus
moles of
gives =
Thus the molarity of
anions in the chemist's solution is 0.0104 M
Answer is: D. Na2SO4.
b(solution) = 0.500 mol ÷ 2.0 L.
b(solution) = 0.250 mol/L.
b(solution) = 0.250 m; molality of the solutions.
ΔT = Kf · b(solution) · i.
Kf - the freezing point depression constant.
i - Van 't Hoff factor.
Dissociation of sodium sulfate in water: Na₂SO₄(aq) → 2Na⁺(aq) + SO₄²⁻(aq).
Sodium sulfate dissociates on sodium cations and sulfate anion, sodium sulfate has approximately i = 3.
Sodium chloride (NaCl) and potassium iodide (KI) have Van 't Hoff factor approximately i = 2.
Carbon dioxide (CO₂) has covalent bonds (i = 1, do not dissociate on ions).
Because molality and the freezing point depression constant are constant, greatest freezing point lowering is solution with highest Van 't Hoff factor.
Question #1
Potasium hydroxide (known)
volume used is 25 ml
Molarity (concentration) = 0.150 M
Moles of KOH used
0.150 × 25/1000 = 0.00375 moles
Sulfuric acid (H2SO4)
volume used = 15.0 ml
unknown concentration
The equation for the reaction is
2KOH (aq)+ H2SO4(aq) = K2SO4(aq) + 2H2O(l)
Thus, the Mole ratio of KOH to H2SO4 is 2:1
Therefore, moles of H2SO4 used will be;
0.00375 × 1/2 = 0.001875 moles
Acid (sulfuric acid) concentration
0.001875 moles × 1000/15
= 0.125 M
Question #2
Hydrogen bromide (acid)
Volume used = 30 ml
Concentration is 0.250 M
Moles of HBr used;
0.25 × 30/1000
= 0.0075 moles
Sodium Hydroxide (base)
Volume used 20 ml
Concentration (unknown)
The equation for the reaction is
NaOH + HBr = NaBr + H2O
The mole ratio of NaOH : HBr is 1 : 1
Therefore, moles of NaOH used;
= 0.0075 moles
NaOH concentration will be
= 0.0075 moles × 1000/20
= 0.375 M
Answer: decomposition
Explanation:
1 . Combustion is a type of chemical reaction in which a hydrocarbon reacts with oxygen to form carbon dioxide ans water along with liberation of large amount of energy.
2. Decomposition is a type of chemical reaction in which a single reactant gives two or more than two products.

3. Single replacement is a type of chemical reaction in which a more reactive element displaces the less reactive element from its slat solution.
4. Synthesis is a type of chemical reaction in which two or more than two reactants combine together to give a single product.
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.