Answer:
When you pull a rubber band there is elastic potential energy stored in the rubber band but once you let go of either side the EPE turns into Kinetic Energy.
Answer:
- <u>Cadmium has larger atomic radius than sulfur.</u>
Explanation:
Down a period, atomic radii decrease from left to right due to the increase in the number of protons and electrons across a period: when a proton is added the pull of the electrons towards the nucleus is larger, so the size of the atom decreases.
Hence, you can compare the elements that belong to a same period and predict that the atom with lower atomic number (number of protons) will haver larger atomic radius. With that:
- Oxygen and fluorine are in the period 3, being oxygen to the left of fluorine, so oxygen is larger than fluorine.
- Sulfur and chlorine are in the period 4, being sulfur to the left of chlorine, so sulfur is larger than chlorine.
Now see whan happens down a group. Atomic radius increases from top to bottom within a group due to electron shielding. That permits you to compare the size of the elements in a group:
- Fluorine and chlorine are in the same group (17), with chlorine directly below fluorine, so the atomic radius of chlorine is larger than the atomic radius of fluorine.
- Sulfur and oxygen are in the same group (16), with sulfur directlly below oxygen, so sulfur the atomic radius of sulfur is larger than the atocmi radius of oxygen.
So far, you can rank the atomic radius of sulfur, chlorine, fluorine, and oxygen, in increasing order as:
- O < F < Cl < S, concluding that O, F, and Cl have smaller atomic radius than S.
Cadmiun, Cd, is to the left and below sulfur, so both electron shielding (down a group) and increase of the number of protons (down a period) lead to predict the cadmium has a larger atomic radius than sulfur.
Explanation:
oxidation of Nitrogen in NO2 is +4
We determine the limiting reactant by using the moles present in the equation and the actual moles.
According to equation, ratio of Fe₂O₃ : Al = 1 : 2
Actual moles of Fe₂O₃ = 187.3 / (56 x 2 + 16 x 3)
= 1.17
Actual moles of Al = 94.51 / 27
= 3.5
Fe₂O₃ is limiting. Fe₂O₃ required:
(moles Al)/2 = 3.5/2 = 1.75
Moles to be added = 1.75 - 1.17
= 0.58
Mass to be added = moles x Mr
= 0.58 x (56 x 2 + 16 x 3)
= 92.8 grams