Answer:
(0, -6)
Step-by-step explanation:
Given the following systems of linear equations;
3x - 2y = 12 ...... equation 1
16x - 4y = 24 ........ equation 2
We would solve for the solution using the elimination method;
Multiplying eqn 1 by 2, we have;
2 * (3x - 2y = 12)
6x - 4y = 24
16x - 4y = 24
Subtracting the two equations, we have;
(6x - 16x) + (-4y -[-4y]) = (24 - 24)
-10x - 0 = 0
-10x = 0
x = -0/10 = 0
Next, we would find the value of y;
3x - 2y = 12
3(0) - 2y = 12
0 - 2y = 12
-2y = 12
y = -12/2
y = -6
Check:
3x - 2y = 12
3(0) - 2(-6) = 12
0 - (-12) = 12
12 = 12
Note: the options provided for this questions are incorrect or inappropriate.
Answer:
the function has two distinct real roots.
Step-by-step explanation:
D=b²-4ac
D<0 No real roots
D=0 One real root
D>0 Two distinct real root.
(-5)²-4*1*-3
25+12
37
Since D is > than 0, the function has two distinct real roots.
Answer:
0.1225
Step-by-step explanation:
Given
Number of Machines = 20
Defective Machines = 7
Required
Probability that two selected (with replacement) are defective.
The first step is to define an event that a machine will be defective.
Let M represent the selected machine sis defective.
P(M) = 7/20
Provided that the two selected machines are replaced;
The probability is calculated as thus
P(Both) = P(First Defect) * P(Second Defect)
From tge question, we understand that each selection is replaced before another selection is made.
This means that the probability of first selection and the probability of second selection are independent.
And as such;
P(First Defect) = P (Second Defect) = P(M) = 7/20
So;
P(Both) = P(First Defect) * P(Second Defect)
PBoth) = 7/20 * 7/20
P(Both) = 49/400
P(Both) = 0.1225
Hence, the probability that both choices will be defective machines is 0.1225
X= -9.375. 0.06x-0.14x=13.48-12.73. -0.08x=0.75