Answer:
1) 2x+7
2) -3x+11
3) 0.75x-2
4) -2x+0
5) -1.5x+2
6) -4x+16
Step-by-step explanation:
1) y = mx + c
m = 2 when x=1 , y=9
9 = 2(1)+c
c = 7
y = 2x + 7
2) m = -3
When x=4, y= -1
-1 = -3(4) + c
c = -1+12 = 11
y = -3x + 11
3) m = 0.75
When x= -4, y= -5
-5 = 0.75(-4) + c
-5 = -3 + c
c = -2
y = 0.75x - 2
4) m = (y2-y1)/(x2-x1)
m = (2-(-6))/(-1-3) = 8/-4 = -2
y = -2x + c
When x= -1, y= 2
2 = -2(-1) + c
2 = 2 + c
c = 0
y = -2x + 0
5) m = (-10-(-4))/(8-4)
m = (-10+4)/4 = -6/4 = -1.5
y = -1.5x + c
When x= 4, y= -4
-4 = -1.5(4) + c
-4 = -6 + c
c = 2
y = -1.5x + 2
6) m = (-4-4)/(5-3) = -8/2 = -4
When x= 3, y= 4
4 = -4(3) + c
4 = -12 + c
c = 16
y = -4x + 16
Answer:
(-1/2,1/2)
Step-by-step explanation:
Normally for sinx amplitude is 2 (1 +1). In the case when it is half sine amplitude is halved, therefore 0.5 +0.5 = 1 Paramers alpha = 2x does not matter because it only stretches the graph horizontally.
hope it helped
So, he runs 1.5 then adds 0.5 every day,
1.5
(1.5+0.5)+1.5=x
(2.0+0.5)+x=z
2.5+0.5+z=y
etc.
Why, they want to know the total distance he runs, so thats why you add x,y,z to the end, and you add 2.0+0.5 because he adds 0.5 every dat Plus the other day's miles jogged
9 - 6x = 45
-9 -9
_____________
-6x = 54
x = -9
________________________
So when you plug that answer into x-4 you get -9 -4, which equals -13.
Understanding the Absolute Value.
First, know what the absolute value is.
The absolute value is the value that determines how far the value is from 0.
For example, The absolute value of -5 is far from 0 5 units. Therefore the absolute value of -5 equals 5.
Basic Absolute Value Defines
| a | = a
- | a | = -a
| - a | = a
Back to the question. To evaluate those expressions, we use the defines of absolute value.
|-16| = 16
|-1| = 1
16-(1)
Then remove the brackets. 16 - 1 = 15
Therefore, the answer is 15.
<em>The</em><em> </em><em>answer</em><em> </em><em>above</em><em> </em><em>is</em><em> </em><em>when</em><em> </em><em>being</em><em> </em><em>subtracted</em><em> </em><em>and</em><em> </em><em>evaluated</em><em> </em><em>from</em><em> </em><em>both</em><em> </em><em>16</em><em>-</em><em>1</em>
<em>Evaluating</em><em> </em><em>for</em><em> </em><em>each</em><em> </em><em>expressions</em><em> </em><em>would</em><em> </em><em>be</em>
<em>|</em><em>-</em><em>16</em><em>|</em><em> </em><em>=</em><em> </em><em>16</em>
<em>-</em><em>|</em><em>-</em><em>1</em><em>|</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em>