Answer:
See the answers below
Explanation:
1) 100. mL of solution containing 19.5 g of NaCl (3.3M)
2) 100. mL of 3.00 M NaCl solution (3 M)
3) 150. mL of solution containing 19.5 g of NaCl (2.2 M)
4) Number 1 and 5 have the same concentration (1.5M)
MW of NaCl = 23 + 36 = 59 g
For number 3
59 g ------------------- 1 mol
19,5 g ----------------- x
x = 19.5 x 1/59 = 0.33 mol
Molarity (M) = 0.33 mol/0.150 l = 2.2 M
For number 4,
Molarity (M) = 0.33mol/0.10 l = 3.3 M
For number 5
Molarity (M) = 0.450/0.3 = 1.5 M
Answer:
The two types of collisions are :
Type a)
<u>Elastic collision</u>
Type b)
<u>Inelastic collision</u>
Explanation:
Collision : It is the event when two bodies collide with each other for small period of time.
During collision , the bodies exert force to each other.
Example :
When boxer hits with punches .
When bat hits the ball in cricket match.
So, collision is short duration interaction of two objects. When the objects collides , there is change in their velocity.
All collision follow law of conservation of momentum . Their type is decided by , whether they follow conservation of energy also.
<u>Compare and contrast the two types</u>
a) Elastic collision : Those collision in which no loss or gain of kinetic energy will occur. They follow conservation of kinetic energy. Example : ideal gaseous molecule
b) Inelastic collision : Those collision in which Change in kinetic energy will occur. They do not follow conservation of kinetic energy.Almost all conservation are inelastic.
Here Kinetic energy get converted into other form of energy.
Answer: The total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.
Explanation:
Given: Mass = 46 g
Initial temperature = 
Final temperature = 
Specific heat capacity of ice = 2.05 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

Thus, we can conclude that the total energy, in kilojoules, that is needed to turn a 46 g block of ice at -25 degrees C into water vapor at 100 degrees C is 11.787 kJ.