1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
15

Which characteristics can be used to differentiate star systems? Select three options

Physics
2 answers:
Veseljchak [2.6K]3 years ago
7 0

Answer: 1,3, and 4 on EDGE science just did the assignment

Explanation:

Lady bird [3.3K]3 years ago
5 0

Answer:

Explanation:

the answer is a,c,d because the stars are characterized by the color temperature, size, composition, and brightness

You might be interested in
What amount of energy is needed for an electron to jump from n = 1 to n = 4?
liberstina [14]

Answer:

E=2.04\times 10^{-18}\ J

Explanation:

We need to find the energy for an electron to jump from n = 1 to n = 4.

The energy in transition from 1 state to another is given by :

E=\dfrac{-2.18\times 10^{-18}}{n^2}\ J

The difference in energy for n = 1 to n = 4 is:

E=-2.18\times 10^{-18}\times (\dfrac{1}{4^2}-1)\\\\E=2.04\times 10^{-18}\ J

So, the required energy is equal to 2.04\times 10^{-18}\ J.

4 0
3 years ago
Calculate the location xcm of the center of mass of the Earth-Moon system. Use a coordinate system in which the center of the Ea
Jet001 [13]

Answer:

The center of mass of the Earth-Moon system is 4.673 kilometers away from center of Earth.

Explanation:

Let suppose that planet and satellite can be treated as particles. The masses of Earth and Moon (m_{E}, m_{M}) are 5.972\times 10^{24}\,kg and 7.349\times 10^{22}\,kg, respectively. The distance between centers is 384,403 kilometers. The location of the center of mass can be found by using weighted averages:

\bar x = \frac{x_{E}\cdot m_{E}+x_{M}\cdot m_{M}}{m_{E}+m_{M}}

If x_{E} = 0\,km and x_{M} = 384,403\,km, then:

\bar x = \frac{(0\,km)\cdot (5.972\times 10^{24}\,kg)+(384,403\,km)\cdot (7.349\times 10^{22}\,kg)}{5.972\times 10^{24}\,kg+7.349\times 10^{22}\,kg}

\bar x = 4.673\,km

The center of mass of the Earth-Moon system is 4.673 kilometers away from center of Earth.

8 0
3 years ago
A light with a second-order bright band forms a diffraction angle of 30. 0°. The diffraction grating has 250. 0 lines per mm. Wh
Luden [163]

The distance between two successive troughs or crests is known as the wavelength. The wavelength of the light will be 1000 nm.

How do you define wavelength?

The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.

The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.

Diffraction angle= 30⁰

Diffraction grating per mm= 250

wavelength = ?

Mathematically the equation of bright band is given by

\rm \lambda= \frac{sin\theta}{nN}

\rm \lambda= \frac{sin23^0}{250\times 2}

\rm \lambda= 0.000001 m

\rm \lambda= 1000 nm

Hence the wavelength of the light will be 1000 nm.

To learn more about the wavelength refer to the link;

brainly.com/question/7143261

8 0
2 years ago
Read 2 more answers
An air craft heads north at 320 km/hr relative to the wind. the wind velocity is 80km/hr from the north. find the relative veloc
Gnoma [55]

Answer:

Relative to the ground, the velocity of the aircraft is 240 km/hr

Explanation:

Relative velocity is different from normal velocity;

When 2 objects are moving in opposite directions towards each other, they will appear to be faster than they actually are;

This is known as the relative velocity;

The information tells us we have the aircraft moving 320 km/hr northwards relative to the wind;

The wind is in the opposite direction at 80 km/hr;

R = relative velocity of the aircraft

v = actual velocity of the aircraft

w = velocity of the wind

R = v + w

Note: if the wind was moving in the same direction, the formula would be R = v - w

320 = v + 80

v = 320 - 80

v = 240

The velocity relative to the ground is simply the actual velocity as the ground doesn't move;

So, relative to the ground, the velocity of the aircraft is simply 240 km/hr

7 0
3 years ago
In objects motion will not change is the force is acting on the object are blank
maks197457 [2]
An object in motion stays in motion while an object at rest stays at rest.
3 0
3 years ago
Other questions:
  • Imagine that an electron in an excited state in a nitrogen molecule decays to its ground state, emitting a photon with a frequen
    7·1 answer
  • Assume the average value of the vertical component of Earth's magnetic field is 42 μT (downward) in some region that has an area
    14·1 answer
  • You hold a 0.125 kg glider A and a 0.500 kg glider B at rest on an air track with a compressed spring of negligible mass between
    13·1 answer
  • Explain how we measure temperatures in our daily lives.
    5·1 answer
  • After stating a hypothesis, what is the next step that a physicist is most likely
    15·2 answers
  • Using Newton's Second Law, can you explain why one of the major advancements in spaceflight was the development of strong cerami
    15·1 answer
  • A cat has a mass of 3 kg and runs at a speed of 6 m/s. How much kinetic
    13·2 answers
  • Select the correct answer What are beats?
    5·1 answer
  • Name two everyday examples in which stored elastic potential energy is made use of. In each case state the energy transfer which
    14·1 answer
  • Bumper car A (281 kg) moving
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!