1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Solnce55 [7]
3 years ago
5

Explain how Pascal's principle can be used to design a fluid power system and describe how a fluid power system works.

Physics
1 answer:
zhenek [66]3 years ago
4 0
Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.
You might be interested in
Suppose you could fit 100 dimes, end to end, between your card with the pinhole and your dime-sized sunball. how many suns could
Naddika [18.5K]

Answer: 100 suns

Explanation:

We can solve this with the following relation:

\frac{d}{x_{sunball-pinhole}}=\frac{D}{x_{sun-pinhole}}

Where:

d=17.91 mm =17.91(10)^{-3}  m is the diameter of a dime

D is the diameter of the Sun

x_{sun-pinhole}=150,000,000 km=1.5(10)^{11}  m is the distance between the Sun and the pinhole

x_{sunball-pinhole}=100 d=1.791 m is the amount of dimes that fit in a distance between the sunball and the pinhole

Finding D:

D=\frac{d}{x_{sunball-pinhole}}x_{sun-pinhole}

D=\frac{17.91(10)^{-3}  m}{1.791 m} 1.5(10)^{11}  m

D=1.5(10)^{9}  m This is roughly the diameter of the Sun

Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:

1 AU=149,597,870,700 m

So, we have to divide this distance between D in order to find how many suns could it fit in this distance:

\frac{149,597,870,700 m}{1.5(10)^{9}  m}=99.73 suns \approx 100 suns

8 0
3 years ago
Determine the acceleration due to gravity for low Earth orbit (LEO) given: MEarth = 6.00 x 1024 kg, rEarth = 6.40 x 106 m, G = 6
Nana76 [90]

Answer:

The answer to the question is as follows

The  acceleration due to gravity for low for orbit is  9.231 m/s²

Explanation:

The gravitational force is given as

F_{G}= \frac{Gm_{1} m_{2}}{r^{2} }

Where F_{G} = Gravitational force

G = Gravitational constant = 6.67×10⁻¹¹\frac{Nm^{2} }{kg^{2} }

m₁ = mEarth = mass of Earth = 6×10²⁴ kg

m₂ = The other mass which is acted upon by  F_{G} and = 1 kg

rEarth = The distance between the two masses = 6.40 x 10⁶ m

therefore at a height of 400 km above the erth we have

r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m

and  F_{G} = \frac{6.67*10^{-11} *6.40*10^{24} *1}{(6.8*10^{6})^{2} } = 9.231 N

Therefore the acceleration due to gravity =  F_{G} /mass  

9.231/1 or 9.231 m/s²

Therefore the acceleration due to gravity at 400 kn above the Earth's surface is  9.231 m/s²

4 0
3 years ago
Read 2 more answers
Please answer quick for brainlist ; )
balandron [24]

Answer:

The diagram assigned B

explanation:

Check the direction of the two vectors, their resultant must be in the same direction.

7 0
3 years ago
5)
miskamm [114]
B . I hope this is right
4 0
3 years ago
An unstrained horizontal spring has a length of 0.31 m and a spring constant of 220 N/m. Two small charged objects are attached
Kruka [31]
The solution you should use is Hooke's law: F=-kx

It should have the same signs because they repel due to the stretch of the spring. 

a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be 
<span>F = kx 
270 N/m x 0.38 m = 102.6 N 
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force. 



8 0
3 years ago
Other questions:
  • Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
    6·1 answer
  • A child’s toy launches a model parachutist of mass 0.40 kg vertically upwards. The model parachutist reaches a maximum height of
    12·1 answer
  • 4. Suppose the observed motion of a moving airplane, illustrated by a distance vs. time graph, is nearly a straight line with ze
    9·1 answer
  • What is the Creation Mandate?​
    11·1 answer
  • Most stars are<br> a.brown fs<br> b.main sequence<br> c.white dwarfs<br> d.pulsars
    15·1 answer
  • A proton with an initial speed of 8.20×105 m/s is brought to rest by an electric field. Part APart complete Did the proton move
    13·1 answer
  • A ball is falling from the second floor balcony to the floor below
    14·2 answers
  • Which is a unit of volume?<br><br> A) centimeter <br> B) meter <br> C) milligram <br> D) milliliter
    15·1 answer
  • How does the distance traveled by the coin compare to its displacement after ten flips?
    13·1 answer
  • This table shows the speed of four race horse traveling on a race track in miles per hour which list is in order from the horse
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!