The statements Molecule B can be used to produce molecule A and Molecules B and C interact so that amino acids can be joined together are TRUE regarding the structures shown in the diagram (Options B and E).
<h3>What are transcription and translation?</h3>
Transcription is the process by which a DNA template (molecule B) can be used to synthesize a complementary RNA (molecule A), while translation is a process in which an sequence is used as templates to generate a protein, which requires tRNAs (molecule C) to trasnport amino acids to the ribosomes.
Therefore, with this data, we can see that DNA is molecule B used to create RNA, which is molecule A, while tRNA is represented by molecule C and it is used during translation.
Learn more about transcription and translation here:
brainly.com/question/25703686
#SPJ1
Answer:
- Diploid → Prophase, metaphase, and anaphase
- Haploid → Telophase
Explanation:
During prophase I, chromosomes get condensed. Each of the chromosomes gets in pair with its homologous one. They do so to make the crossing-over possible, a stage where they interchange their parts → 2n
During metaphase I, each of the homologous pairs is driven to the equatorial plane, where they randomly line up → 2n
During anaphase I, occurs the independent separation of homologous chromosomes that migrate to opposite poles of the cell. This separation generates different chromosomal combinations in the daughter cells. There are two alternatives per homologous pair → 2n
In telophase I, half of the chromosomes are already in one of the poles, while the other half is on the other pole. Each group of chromosomes has now half the number of the original cell. The nuclear membrane forms again in each pole → n
Finally, occurs cytokinesis, which involves the invagination of the cell membrane and cytoplasmic division.
The two new cells are ready for meiosis II.
Answer:
The increased activity prior to the saccade reflects a shift in attention to the stimulus inside that neuron's receptive field.
Explanation:
They observed that the neurological basis of attention, first made in the superior colliculus has been extended to a number of areas in both the dorsal and ventral streams.
I think the best answer for this question would be B)
Answer: Endoplasmic Reticulum
Explanation:
The Endoplasmic Reticulum is a network of interconnecting membrane enclosing channels that are continuous from outer outer nuclear envelope to plasma membrane. ER is classified into rough and smooth varieties.
The ER is very prominent in the cell activity synthesizing proteins e.g glycoproteins, lipoproteins and immunoglobins