Answer:
A i. Internal energy ΔU = -4.3 J ii. Internal energy ΔU = -6.0 J B. The second system is lower in energy.
Explanation:
A. We know that the internal energy,ΔU = q + w where q = quantity of heat and w = work done on system.
1. In the above q = -7.9 J (the negative indicating heat loss by the system). w = 3.6 J (It is positive because work is done on the system). So, the internal energy for this system is ΔU₁ = q + w = -7.9J + 3.6J = -4.3 J
ii. From the question q = +1.5 J (the positive indicating heat into the system). w = -7.5 J (It is negative because work is done by the system). So, the internal energy for this system is ΔU₂ = q + w = +1.5J + (-7.5J) = +1.5J - 7.5J = - 6.0J
B. We know that ΔU = U₂ - U₁ where U₁ and U₂ are the initial and final internal energies of the system. Since for the systems above, the initial internal energies U₁ are the same, then we say U₁ = U. Let U₁ and U₂ now represent the final energies of both systems in A i and A ii above. So, we write ΔU₁ = U₁ - U and ΔU₂ = U₂ - U where ΔU₁ and ΔU₂ are the internal energy changes in A i and A ii respectively. Now from ΔU₁ = U₁ - U, U₁ = ΔU₁ + U and U₂ = ΔU₂ + U. Subtracting both equations U₁ - U₂ = ΔU₁ - ΔU₂
= -4.3J -(-6.0 J)= 1.7 J. Since U₁ - U₂ > 0 , U₂ < U₁ , so the second system's internal energy increase less and is lower in energy and is more stable.
Answer:
Clouds are water
Explanation:
When a gas gathers up into a cloud,the cloud starts to rain and water comes out of the cloud.
Answer:
false
Explanation:
as the particles move further apart their forces of attraction become qeak
Answer:
Water can dissolve salt because the positive part of water molecules attracts the negative chloride ions and the negative part of water molecules attracts the positive sodium ions. The amount of a substance that can dissolve in a liquid (at a particular temperature) is called the solubility of the substance.
Explanation:
The formula for Cs and S is Cs₂S.
For Cs and S,
Ions formed will be Cs⁺ and S²⁻
As cesium belongs to group 1A and sulfur belongs to group 6A. Therefore, the condensed electronic configuration is -
For Cs is [Xe} 6s¹ and for S is [Ne] 3s²3p⁴.
Cs have 1 valence electron and S have 6 valence electrons.
Hence to attain a stable electronic configuration, both two Cs atoms lose one electron and form Cs⁺ and these two electrons will be accepted by one S atom to form S²⁻.
Therefore the formula for the compound is Cs₂S as Cs donate 1 electron and S will accept 2 electrons from Cs.
The formula is Cs₂S.
To learn more about electronic configuration, visit: brainly.com/question/15051483
#SPJ4