Answer:
No.
Explanation:
1. Volume of a rice grain
There is no standard for the size of a rice grain, so let's make an arbitrary assumption.
An average rice grain behaves as if it were a rectangular solid with dimensions 7 mm × 2 mm × 2 mm.
The volume of one rice grain is
V = lwh = 7 mm × 2 mm × 2 mm = 28 mm³
Convert to cubic metres
:

2. Volume of the room
V = lwh = 30.0 m × 8.5 m × 3.5 m = 890 m³
3. Volume of a mole of rice

4. Conclusion
The room is not big enough to hold a mole of rice.
If you work it out, you will find that it takes about
20 000 000 000 000 (twenty trillion) rooms to hold a mole of rice.
Answer:
Biodiesel has a higher oxygen content (usually 10 to 12 percent) than petroleum diesel. ... Biodiesel is more chemically active as a solvent than petroleum diesel. As a result, it can be more aggressive to some materials that are normally considered safe for diesel fuel. Biodiesel is much less toxic than petroleum diesel.
Answer:
more energy
Explanation:
shorter lengths in bonds require more energy because atoms are strongly connected in short length bonds
The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
![rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
At a certain concentration of ![H_2 and [tex]I_2, the initial rate of reaction is 0.120 M/s. What would the initial rate of the reaction be if the concentration of [tex]H_2 were halved.Answer : The initial rate of the reaction will be, 0.03 M/sExplanation :Rate law expression for the reaction:[tex]rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=H_2%20and%20%5Btex%5DI_2%2C%20the%20initial%20rate%20of%20reaction%20is%200.120%20M%2Fs.%20What%20would%20the%20initial%20rate%20of%20the%20reaction%20be%20if%20the%20concentration%20of%20%5Btex%5DH_2%20were%20halved.%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%20%3A%20The%20initial%20rate%20of%20the%20reaction%20will%20be%2C%200.03%20M%2Fs%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%20%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3ERate%20law%20expression%20for%20the%20reaction%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Drate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
As we are given that:
Initial rate = 0.120 M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
![\frac{R}{0.120}=\frac{k(\frac{[H_2]}{2})^2[NH_3]}{k[H_2]^2[NH_3]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%7D%7B0.120%7D%3D%5Cfrac%7Bk%28%5Cfrac%7B%5BH_2%5D%7D%7B2%7D%29%5E2%5BNH_3%5D%7D%7Bk%5BH_2%5D%5E2%5BNH_3%5D%7D)


Therefore, the initial rate of the reaction will be, 0.03 M/s