Answer:
si
Step-by-step explanation:
si
Answer:
hundreth, because it is the second digit after the decimal point.
Answer:
Step-by-step explanation:
// Build on Thu Oct 20 21:06:21 CEST 2011 for language "en"
myHostname = window.location.hostname;
var myTLD = "." + myHostname.substring(myHostname.indexOf("wupload") + "wupload.".length).split(".")[0];
function afterLoad() {
return
}
ieFixForFileSelectionOnChangeEventTimer = null;
function ieFixForFileSelectionOnChangeEvent(a) {
$("#siteName").toggle();
if ($("#inputFileSelection").val() == "") {
ieFixForFileSelectionOnChangeEventTimer = setTimeout("ieFixForFileSelectionOnChangeEvent()", 200)
} else {
$("body")[0].focus()
}
}
function urlencode(a) {
return escape(a.toString().replace(/%/g, "%25").replace(/\+/g, "%2B")).replace(/%25/g, "%")
}
The correct answer is: [B]: " (2, 5) ".
__________________________________________
Given:
__________________________________________
-5x + y = -5 ;
-4x + 2y = 2 .
___________________________________________
Consider the first equation:
___________________________
-5x + y = -5 ; ↔ y + (-5x) = -5 ;
↔ y - 5x = -5 ; Add "5x" to each side of the equation; to isolate "y" on one side of the equation; and to solve in terms of "y".
_____________________________________________
y - 5x + 5x = -5 + 5x
y = -5 + 5x ; ↔ y = 5x - 5 ;
____________________________________________
Now, take our second equation:
______________________________
-4x + 2y = 2 ; and plug in "(5x - 5)" for "y" ; and solve for "x" :
_____________________________________________________
-4x + 2(5x - 5) = 2 ;
______________________________________________________
Note, 2(5x - 5) = 2(5x) - 2(5) = 10x - 10 ;
__________________________________________
So: -4x + 10x - 10 = 2 ;
On the left-hand side of the equation, combine the "like terms" ;
-4x +10x = 6x ; and rewrite:
6x - 10 = 2 ;
Now, add "10" to each side of the equation:
6x - 10 + 10 = 2 + 10 ;
to get:
6x = 12 ; Now, divide EACH side of the equation by "6" ; to isolate "x" on one side of the equation; and to solve for "x" ;
6x/6 = 12 / 6 ;
x = 2 ;
_________________________________
Now, take our first given equation; and plug our solved value for "x" ; which is "2" ; and solve for "y" ;
_____________________________________
-5x + y = -5 ;
-5(2) + y = -5 ;
-10 + y = -5 ; ↔
y - 10 = -5 ;
Add "10" to each side of the equation; to isolate "y" on one side of the equation; and to solve for "y" ;
y - 10 + 10 = -5 + 10 ;
y = 5 .
_____________________________
So, we have, x = 2 ; and y = 5 .
____________________________
Now, let us check our work by plugging in "2" for "x" and "5" for "y" in BOTH the original first and second equations:
______________________________
first equation:
-5x + y = -5 ;
-5(2) + 5 =? -5?
-10 + 5 =? -5 ? YES!
______________________
second equation:
-4x + 2y = 2 ;
-4(2) + 2(5) =? 2 ?
-8 + 10 =? 2 ? Yes!
_______________________________________________________
So, the answer is:
___________________________________________________________
x = 2 , y = 5 ; or, "(2, 5)" ; which is: "Answer choice: [B] " .
___________________________________________________________