1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelechka [254]
3 years ago
13

Write an expression using multiplication and addition with the sum of 16

Mathematics
2 answers:
Rudiy273 years ago
6 0
There are many answers for this and this is one of them:
Y = 4(3 + 1)
Y = 16
vagabundo [1.1K]3 years ago
5 0
Lot of answers m8 mine is
2(6+2)
=16
You might be interested in
Prove the following
fomenos

Answer:

Step-by-step explanation:

\large\underline{\sf{Solution-}}

<h2 /><h2><u>Consider</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \dfrac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \}cos(23π+x)cos(2π+x)

<h2><u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>

\rm \: \cos \bigg( \dfrac{3\pi}{2} + x \bigg) = sinx

\rm \: {cos \: (2\pi + x) }

\rm \: \cot \bigg( \dfrac{3\pi}{2} - x \bigg) \: = \: tanx

\rm \: cot(2\pi + x) \: = \: cotx

So, on substituting all these values, we get

\rm \: = \: sinx \: cosx \: (tanx \: + \: cotx)

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{sinx}{cosx} + \dfrac{cosx}{sinx}

\rm \: = \: sinx \: cosx \: \bigg(\dfrac{ {sin}^{2}x + {cos}^{2}x}{cosx \: sinx}

\rm \: = \: 1=1

<h2>Hence,</h2>

\boxed{\tt{ \cos \bigg( \frac{3\pi}{2} + x \bigg) \cos \: (2\pi + x) \bigg \{ \cot \bigg( \frac{3\pi}{2} - x \bigg) + cot(2\pi + x) \bigg \} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h2>ADDITIONAL INFORMATION :-</h2>

Sign of Trigonometric ratios in Quadrants

  • sin (90°-θ)  =  cos θ
  • cos (90°-θ)  =  sin θ
  • tan (90°-θ)  =  cot θ
  • csc (90°-θ)  =  sec θ
  • sec (90°-θ)  =  csc θ
  • cot (90°-θ)  =  tan θ
  • sin (90°+θ)  =  cos θ
  • cos (90°+θ)  =  -sin θ
  • tan (90°+θ)  =  -cot θ
  • csc (90°+θ)  =  sec θ
  • sec (90°+θ)  =  -csc θ
  • cot (90°+θ)  =  -tan θ
  • sin (180°-θ)  =  sin θ
  • cos (180°-θ)  =  -cos θ
  • tan (180°-θ)  =  -tan θ
  • csc (180°-θ)  =  csc θ
  • sec (180°-θ)  =  -sec θ
  • cot (180°-θ)  =  -cot θ
  • sin (180°+θ)  =  -sin θ
  • cos (180°+θ)  =  -cos θ
  • tan (180°+θ)  =  tan θ
  • csc (180°+θ)  =  -csc θ
  • sec (180°+θ)  =  -sec θ
  • cot (180°+θ)  =  cot θ
  • sin (270°-θ)  =  -cos θ
  • cos (270°-θ)  =  -sin θ
  • tan (270°-θ)  =  cot θ
  • csc (270°-θ)  =  -sec θ
  • sec (270°-θ)  =  -csc θ
  • cot (270°-θ)  =  tan θ
  • sin (270°+θ)  =  -cos θ
  • cos (270°+θ)  =  sin θ
  • tan (270°+θ)  =  -cot θ
  • csc (270°+θ)  =  -sec θ
  • sec (270°+θ)  =  cos θ
  • cot (270°+θ)  =  -tan θ
7 0
3 years ago
Read 2 more answers
Determine whether the three points are collinear.<br> (0, - 10). (-3,- 13), (2,-8)
LUCKY_DIMON [66]

Answer:

<h2>YES. These points are collinear.</h2>

Step-by-step explanation:

If three points are collinear, then the slopes are the same.

The formula of a slope:

m=\dfrac{y_2-y_1}{x_2-x_1}

For (0, -10) and (-3, -13):

m=\dfrac{-13-(-10)}{-3-0}=\dfrac{-13+10}{-3}=\dfrac{-3}{-3}=1

For (-3, -13) and (2, -8):

m=\dfrac{-8-(-13)}{2-(-3)}=\dfrac{-8+13}{2+3}=\dfrac{5}{5}=1

We can check the last pair (0, -10) and (2, -8):

m=\dfrac{-8-(-10)}{2-0}=\dfrac{-8+10}{2}=\dfrac{2}{2}=1

5 0
3 years ago
Jason scored a total of 38.14points in four events during his state gymnastic compitition.if he had the same score for each even
Solnce55 [7]
That would simply be
                                  38.14 ÷ 4 = 9.535

thus he scored 9.535 on each event
3 0
3 years ago
What is the graph of f(x)=x^2-2x+3
Neko [114]

Answer:

The graph in the attached figure

Step-by-step explanation:

we have

f(x)=x^{2}-2x+3

This is the equation of a vertical parabola open upwards

The vertex is a minimum

The vertex is the point (1,2)

The y-intercept is the point (0,3)

The function does not have x-intercepts

see the attached figure

7 0
3 years ago
Help on area of composite figures
balandron [24]
 break it up into simpler shapes. See the photo.
There is:
trapezoid
A = 0.5(3.2+6.5)4.5
= 21.825

triangle
A = 0.5(2.7)4.5
= 6.075

rectangle
A = 1.8(4.5)
= 8.1

Total Area = 21.825 + 6.075 + 8.1
= 36

7 0
3 years ago
Other questions:
  • How do you know if the equation for a problem is multiplication
    10·2 answers
  • Write the equation of line, in slope-intercept form, that is perpendicular to y=1/4x and passes through the point (2, -5). Your
    14·1 answer
  • Jenny wants to earn $ 1,300 by the end of the summer . How much more dose she need to earn to reach her goal?
    13·1 answer
  • Amira is painting a rectangular banner 2 1/4 yards wide on a wall in the cafeteria.
    7·1 answer
  • Simply 2+ 3/5x - 1 - 1/5x
    11·1 answer
  • Determine whether the given value is a solution to the equation.
    10·2 answers
  • A. 3<br> B. 1/3<br> C. -3<br> D. -1/3
    12·1 answer
  • Slope of line a is ½. What is the equation of a line that is parallel to line a? Y+½x=2 -2x+y+2=0 2x-2=y -½x+y-2=0
    7·1 answer
  • 3) A private golf course offers cart rentals for $22 and a round of golf at $1.35 per hole for non-members. After purchasing a b
    6·2 answers
  • A circle with radius r is inscribed inside a square with a side length s. Use 3.14 for TT. Round answers to the nearest hundredt
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!