Consider the function

, which has derivative

.
The linear approximation of

for some value

within a neighborhood of

is given by

Let

. Then

can be estimated to be

![\sqrt[3]{63.97}\approx4-\dfrac{0.03}{48}=3.999375](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B63.97%7D%5Capprox4-%5Cdfrac%7B0.03%7D%7B48%7D%3D3.999375)
Since

for

, it follows that

must be strictly increasing over that part of its domain, which means the linear approximation lies strictly above the function

. This means the estimated value is an overestimation.
Indeed, the actual value is closer to the number 3.999374902...
Answer:
1320
Step-by-step explanation:
880/8 = 110
12x110 = 1320
Answer:
x = 45/2 = 22.5 cm
Step-by-step explanation:
2x + 45 = 90
2x = 90- 45= 45
2x = 45
x = 45/2 = 22.5 cm
<em><u>plz </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> to</u></em><em><u> you</u></em> .
<em><u>if </u></em><em><u>you</u></em><em><u> find</u></em><em><u> it</u></em><em><u> useful</u></em><em><u>.</u></em>
First, Use the slope equation to find the slope of the line passing thru these two points:
m=rise/run
Here, the rise is 13-3, or 10, and the run is 7-2, or 5. Thus, the slope, m, is 10/5, or 2: m=2.
We want the slope-intercept form, so let's begin with its general form:
y=mx+b. Substitute the slope 2 for m: y=2x+b. Now choose either of the given points. Arbitrarily I am choosing (2,3). Then x=2 and y=3.
Substituting these values into y=2x+b: 3 = 2(2) + b, or b= 3 -4, or b = -1.
Then the equation of this line, in slope-intercept form, is y = 2x - 1.
Marneisha do me a favor and follow me if you have anymore questions send me a message