L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=6The arclength of a parametric curve can be found using the formula:
L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=
6
√
3
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Answer:
ace, attack, antenna, approach, assist.
Step-by-step explanation:
The first one would be approximately -0.8. It has a negative slope and the data points are fairly close together.
The second one is almost a straight line so it would be very close to 1. I would say 0.97
The closer the data is to a straight line the closer the r value is to 1 or negative 1.
Hope this helps.
Answer:
10 spiders and 12 ants
Step-by-step explanation:
You need to create two equations
s = # of spiders
a = # of ants
s + a = 22 heads
since each spider and ant has one head
8s + 6a = 152 legs
since every spider has 8 legs and every ant has 6
s + a = 22 can be turned into s = 22 - a
now use substitution
8(22 - a) + 6a = 152
176 - 8a + 6a = 152
176 - 2a = 152
24 = 2a
a = 12
now that you have the number of ants you can solve for the number of spiders
s + a = 22
s + 12 = 22
s = 10