3x+8
i am pretty sure about that
Answers:
33. Angle R is 68 degrees
35. The fraction 21/2 or the decimal 10.5
36. Triangle ACG
37. Segment AB
38. The values are x = 6; y = 2
40. The value of x is x = 29
41. C) 108 degrees
42. The value of x is x = 70
43. The segment WY is 24 units long
------------------------------------------------------
Work Shown:
Problem 33)
RS = ST, means that the vertex angle is at angle S
Angle S = 44
Angle R = x, angle T = x are the base angles
R+S+T = 180
x+44+x = 180
2x+44 = 180
2x+44-44 = 180-44
2x = 136
2x/2 = 136/2
x = 68
So angle R is 68 degrees
-----------------
Problem 35)
Angle A = angle H
Angle B = angle I
Angle C = angle J
A = 97
B = 4x+4
C = J = 37
A+B+C = 180
97+4x+4+37 = 180
4x+138 = 180
4x+138-138 = 180-138
4x = 42
4x/4 = 42/4
x = 21/2
x = 10.5
-----------------
Problem 36)
GD is the median of triangle ACG. It stretches from the vertex G to point D. Point D is the midpoint of segment AC
-----------------
Problem 37)
Segment AB is an altitude of triangle ACG. It is perpendicular to line CG (extend out segment CG) and it goes through vertex A.
-----------------
Problem 38)
triangle LMN = triangle PQR
LM = PQ
MN = QR
LN = PR
Since LM = PQ, we can say 2x+3 = 5x-15. Let's solve for x
2x+3 = 5x-15
2x-5x = -15-3
-3x = -18
x = -18/(-3)
x = 6
Similarly, MN = QR, so 9 = 3y+3
Solve for y
9 = 3y+3
3y+3 = 9
3y+3-3 = 9-3
3y = 6
3y/3 = 6/3
y = 2
-----------------
Problem 40)
The remote interior angles (2x and 21) add up to the exterior angle (3x-8)
2x+21 = 3x-8
2x-3x = -8-21
-x = -29
x = 29
-----------------
Problem 41)
For any quadrilateral, the four angles always add to 360 degrees
J+K+L+M = 360
3x+45+2x+45 = 360
5x+90 = 360
5x+90-90 = 360-90
5x = 270
5x/5 = 270/5
x = 54
Use this to find L
L = 2x
L = 2*54
L = 108
-----------------
Problem 42)
The adjacent or consecutive angles are supplementary. They add to 180 degrees
K+N = 180
2x+40 = 180
2x+40-40 = 180-40
2x = 140
2x/2 = 140/2
x = 70
-----------------
Problem 43)
All sides of the rhombus are congruent, so WX = WZ.
Triangle WPZ is a right triangle (right angle at point P).
Use the pythagorean theorem to find PW
a^2+b^2 = c^2
(PW)^2+(PZ)^2 = (WZ)^2
(PW)^2+256 = 400
(PW)^2+256-256 = 400-256
(PW)^2 = 144
PW = sqrt(144)
PW = 12
WY = 2*PW
WY = 2*12
WY = 24
Answer:
<u>9 mph</u>
Step-by-step explanation:
Calvin's first leg of the trip took 0.5 hr (30 minutes) at 6 mph. That means he travelled (0.5hr x 6 mph =) 3 miles. He travelled 3 miles on the return trip, by definition (same path home). At 18 mph, 3 miles would take (3 miles/18 mph =) 0.1667 hours. That makes a total of 6 miles and (0.5 + 0.1667=) 0.6667 hours.
(6 miles)/(0.6667 hours) = 9 mph is Calvin's average speed for the round trip.
Well, 225 + 75 = 300. So, that means 300 dollars per night. 1,200 ÷ 300 =400
400 Is the answer.
1.) Solve for x:
5 x + 7 = 3 x + 21
Subtract 3 x from both sides:
(5 x - 3 x) + 7 = (3 x - 3 x) + 21
5 x - 3 x = 2 x:
2 x + 7 = (3 x - 3 x) + 21
3 x - 3 x = 0:
2 x + 7 = 21
Subtract 7 from both sides:
2 x + (7 - 7) = 21 - 7
7 - 7 = 0:
2 x = 21 - 7
21 - 7 = 14:
2 x = 14
Divide both sides of 2 x = 14 by 2:
(2 x)/2 = 14/2
2/2 = 1:
x = 14/2
The gcd of 14 and 2 is 2, so 14/2 = (2×7)/(2×1) = 2/2×7 = 7:
Answer: x = 7
____________________________________________________________
2.) Solve for x:
3 x - 2 (5 - x) = 3 x - 3 (x - 10)
-2 (5 - x) = 2 x - 10:
2 x - 10 + 3 x = 3 x - 3 (x - 10)
Grouping like terms, 3 x + 2 x - 10 = (3 x + 2 x) - 10:
(3 x + 2 x) - 10 = 3 x - 3 (x - 10)
3 x + 2 x = 5 x:
5 x - 10 = 3 x - 3 (x - 10)
-3 (x - 10) = 30 - 3 x:
5 x - 10 = 30 - 3 x + 3 x
3 x - 3 x = 0:
5 x - 10 = 30
Add 10 to both sides:
5 x + (10 - 10) = 10 + 30
10 - 10 = 0:
5 x = 30 + 10
30 + 10 = 40:
5 x = 40
Divide both sides of 5 x = 40 by 5:
(5 x)/5 = 40/5
5/5 = 1:
x = 40/5
The gcd of 40 and 5 is 5, so 40/5 = (5×8)/(5×1) = 5/5×8 = 8:
<span>Answer: x = 8
_________________________________________________________
3.) Solve for x:</span>
5 (x + 1) = 3 (2 x + 3) + 5
3 (2 x + 3) = 6 x + 9:
5 (x + 1) = 6 x + 9 + 5
Grouping like terms, 6 x + 5 + 9 = 6 x + (9 + 5):
5 (x + 1) = 6 x + (9 + 5)
9 + 5 = 14:
5 (x + 1) = 6 x + 14
Expand out terms of the left hand side:
5 x + 5 = 6 x + 14
Subtract 6 x from both sides:
(5 x - 6 x) + 5 = (6 x - 6 x) + 14
5 x - 6 x = -x:
-x + 5 = (6 x - 6 x) + 14
6 x - 6 x = 0:
5 - x = 14
Subtract 5 from both sides:
(5 - 5) - x = 14 - 5
5 - 5 = 0:
-x = 14 - 5
14 - 5 = 9:
-x = 9
Multiply both sides of -x = 9 by -1:
(-x)/(-1) = -9
(-1)/(-1) = 1:
<span>Answer: x = -9</span>