Answer:
The maximum speed at which the car can safety travel around the track is 18.6m/s.
Explanation:
Since the car is in circular motion, there has to be a centripetal force
. In this case, the only force that applies for that is the static frictional force
between the tires and the track. Then, we can write that:

And since
and
, we have:

Now, if we write the vertical equation of motion of the car (in which there are only the weight and the normal force), we obtain:

Substituting this expression for
and solving for
, we get:

Finally, plugging in the given values for the coefficient of friction and the radius of the track, we have:

It means that in its maximum value, the speed of the car is equal to 18.6m/s.
Newton<span> worked in many areas of mathematics and physics. He developed the theories of gravitation in 1666, when he was only 23 years old. Some twenty years later, in 1686, he presented his </span>three laws of motion<span> in the "Principia Mathematica Philosophiae Naturalis." hope that helps </span>
The concepts of force<span>, mass, and weight play critical roles. Newton's Laws of. Motion ... the person stops </span>pushing<span>? ... F </span>net<span> =10 N </span>2<span> N. = 8 N (to the right) a = F </span>net<span> m. = 8 N. 5 kg. =1.6 m s. </span>2<span> ... </span>Two equal forces<span> act on an </span>object<span> in the directions shown. </span>If<span> these ... </span>Two<span> connected carts </span>being accelerated by a force<span> F applied by.</span>
The only thing we know of so far that can shift light to longer wavelengths is the "Doppler" effect. If the source and the observer are moving apart, then the observer sees wavelengths that are longer than they should be. If the source and the observer are moving toward each other, then the observer sees wavelengths that are shorter than they should be. It works for ANY wave ... sound, light, water etc. The trick is to know what the wavelength SHOULD be. If you know that, then you can tell whether you and the source are moving together or apart, and you can even tell how fast. If the lines in a star"s spectrum are at wavelengths that are too long, then from everything we know right now, the star and Earth are moving apart.
This is simple question and easy to understand.
so first you use a formula to calculate frequency of the wave.
v _ stands for velocity a.k.a speed
f_ stands for frequency which you have to find.
(pronounced lemda)_ stands for wavelength.
Then you gonna place all your values according to you have in the formula as shown then solve for f.
Finally, you use the time formula
where
T_ is period a.k.a time which equal to the reciprocal of frequency or equal to 1/f.
Simply input your values according to the formula and you your answer as 0.5s