Base 10 has the ten digits: {0, 1, 2, 3, 4, 5, 6,7, 8, 9}
Base 11 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A} where A is treated as a single digit number
Base 12 has the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B}
Base 13 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C}
Base 14 has the digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D}
The digit D is the largest single digit of that last set. So the largest 3-digit base 14 integer is DDD which is the final answer
Note: It is similar to how 999 is the largest 3-digit base 10 integer
Answer:
7.9
Step-by-step explanation:
the first thing to do is find the second projection.
16-7 = 9
than we can use a proportion to find BD
7 : BD = BD : 9
BD = √9 x 7 = √63 = 7.9
we have to use the square root because in the proportion BD Is repeated two times. If we don’t use it, we find BD^2
Answer:
The exponential growth function is 
Step-by-step explanation:
Given: The population of a certain city was 145,380 in 2000 and 219,135 in 2010.
To find: exponential growth function that models the growth of the city
Solution:
The exponential growth function is given by 
Here, P denotes total population after time t
denotes initial population
k denotes rate of growth
t denotes time
As
,

As 

<h3>
Answer: Yes they are equivalent</h3>
==============================================
Work Shown:
Expand out the first expression to get
(a-3)(2a^2 + 3a + 3)
a(2a^2 + 3a + 3) - 3(2a^2 + 3a + 3)
2a^3 + 3a^2 + 3a - 6a^2 - 9a - 9
2a^3 + (3a^2-6a^2) + (3a-9a) - 9
2a^3 - 3a^2 - 6a - 9
Divide every term by 2 so we can pull out a 2 through the distributive property
2a^3 - 3a^2 - 6a - 9 = 2(a^3 - 1.5a^2 - 3a - 4.5)
This shows that (a-3)(2a^2 + 3a + 3) is equivalent to 2(a^3 - 1.5a^2 - 3a - 4.5)