<span>Many scientific investigations have provided evidence to support this as the best explanation of the data</span>
Hello.
The answer is Gas.
In gases the partcails have more space and can move faster.
Have a nice day
Answer:
1. not affected by a magnet 1 liquid
2. mostly space 2 solid
3. flows freely but particles still attract 3 proton
4. positively charged particles 4 gas
5. free to move in all space 5 alpha particles
6. negatively charged particles 6 atoms
7. atoms nearly fixed in space 7 gamma ray 8. helium nucleus 8 electron (beta)
3 L will be the final volume for the gas as per Charle's law.
Answer:
Explanation:
The kinetic theory of gases has two significant law which forms the backdrop of motion of gases. They are Charle's law and Boyle's law. As per Charle's law, the volume of any gas molecule at constant pressure is directly proportional to the temperature of the molecule.
V∝ T
Since, here two volumes are given and at two different temperatures with constant pressure. Then as per Charle's law, the relation between the volumes of air at different temperature will be

So in this case, V1 = 6 L and T1 = 80° C. Similarly, T2 = 40° C. So we have to determine the V2.


So, 3 L will be the final volume for the gas as per Charle's law.
To determine the time it takes to completely vaporize the given amount of water, we first determine the total heat that is being absorbed from the process. To do this, we need information on the latent heat of vaporization of water. This heat is being absorbed by the process of phase change without any change in the temperature of the system. For water, it is equal to 40.8 kJ / mol.
Total heat = 40.8 kJ / mol ( 1.50 mol ) = 61.2 kJ of heat is to be absorbed
Given the constant rate of 19.0 J/s supply of energy to the system, we determine the time as follows:
Time = 61.2 kJ ( 1000 J / 1 kJ ) / 19.0 J/s = 3221.05 s