1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
3 years ago
13

A rectangle has a perimeter of 12 x + 8y. If one side of the rectangle is 4x-2y, write expression of the other side.

Mathematics
1 answer:
Alona [7]3 years ago
8 0

Answer:

The expression of the other side of the rectangle = 2x + 4y + 25

Step-by-step explanation:

The Perimeter of the rectangle is 12 x + 8y

The one side of the rectangle is 4x - 25

Let the other side of the rectangle be S

Now, the PERIMETER OF THE RECTANGLE = 2 ( SUM of BOTH SIDES)

⇒  12 x + 8y =  2(S + (4x - 25))

or, 12 x + 8y =  2S +  8 x - 50

or, 12 x + 8y - 8x + 50 = 2S

⇒ 4x + 8y + 50 = 2S

or, S = 2x + 4y + 25

Hence, the expression of the other side of the rectangle = 2x + 4y + 25

You might be interested in
PLEASE HURRY HELP ME DUE IN 5 MIN
Mars2501 [29]

Answer:

Parallel I checked with a graph

3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Help ASAP don't spam please, its about exponents
Nastasia [14]

Answer:

A. FALSE

Step-by-step explanation:

pls mark me as brainliest

7 0
3 years ago
Read 2 more answers
Can y’all help me please I will give Brainlist
vekshin1

Answer:

It would be a five

Step-by-step explanation:

6 0
3 years ago
What equation represents the line that is perpendicular to y=1/2x - 3 and passes through the point (4,-6)?
zmey [24]

Answer:

The equation of line perpendicular to given line and passing through point (4 , - 6) is y = - 2 x - 2

Step-by-step explanation:

Given as :

The equation of line is

y = \dfrac{1}{2}x - 3

Now, standard equation of line is

y = m x + c

where m is the slope of line and c is the y-intercept

So, comparing with standard line equation with given line equation

∴ slope of given line = m = \dfrac{1}{2}

Again

other line is perpendicular to given line and passes through point (4 , - 6)

Let The slope of other line = M

∵ Two lines are perpendicular

∴ <u>From perpendicular lines property , the product of lines = - 1</u>

i.e m × M = -1

Or,  \dfrac{1}{2} × M = -1

Or M = \frac{-1}{\frac{1}{2}}

∴  M = - 2

So, The slope of other line = M = - 2

<u>Now, equation of line with slope - 2 and points (4 , - 6) in slope-point form</u>

y - y_1 = M (x - x_1)

Or, y - ( - 6) = ( -2) × (x - 4)

Or, y + 6 = - 2 x + 4

Or, y = - 2 x + 4 - 6

∴   y = - 2 x - 2

So, The equation of other line is y = - 2 x - 2

Hence, The equation of line perpendicular to given line and passing through point (4 , - 6) is y = - 2 x - 2  Answer

5 0
3 years ago
Other questions:
  • If A is the center of the circle, then which statement explains how segment EF is related to segment GF? Circle A with inscribed
    11·1 answer
  • Find all zeros of ƒ(x) = x^3 + 2x^2 – x – 2. Then determine the multiplicity at each zero. State whether the graph will touch or
    12·1 answer
  • What is the result if you divide 18rs5t6 divide by -3r2st3?
    14·1 answer
  • Point P is the interior of LaTeX: \angle OZQ.\: ∠ O Z Q . If LaTeX: m\:\angle\:OZQ\: m ∠ O Z Q = 125 and LaTeX: m\angle OZP\: m
    15·1 answer
  • Factor the following expression X^2-9x+8
    10·1 answer
  • What is the value of d
    6·1 answer
  • If a rectangle measures 12 meters by 16 meters, what is the length, in meters, of the diagonal of the rectangle?
    7·1 answer
  • When x= 3, y = 36.<br> When x = 10, y = 120.<br> What is the constant of proportionality?
    7·1 answer
  • Ratios for 42 and 54
    13·2 answers
  • The probability of rain =0.2, sun=0.3,cloud=0.5. What is the probability of rain and sun over a two day period?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!