By using <span>De Moivre's theorem:
</span>
If we have the complex number ⇒ z = a ( cos θ + i sin θ)
∴
![\sqrt[n]{z} = \sqrt[n]{a} \ (cos \ \frac{\theta + 360K}{n} + i \ sin \ \frac{\theta +360k}{n} )](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bz%7D%20%3D%20%20%5Csqrt%5Bn%5D%7Ba%7D%20%5C%20%28cos%20%5C%20%20%5Cfrac%7B%5Ctheta%20%2B%20360K%7D%7Bn%7D%20%2B%20i%20%5C%20sin%20%5C%20%5Cfrac%7B%5Ctheta%20%2B360k%7D%7Bn%7D%20%29)
k= 0, 1 , 2, ..... , (n-1)
For The given complex number <span>⇒ z = 81(cos(3π/8) + i sin(3π/8))
</span>
Part (A) <span>
find the modulus for all of the fourth roots </span>
<span>∴ The modulus of the given complex number = l z l = 81
</span>
∴ The modulus of the fourth root =
Part (b) find the angle for each of the four roots
The angle of the given complex number =

There is four roots and the angle between each root =

The angle of the first root =

The angle of the second root =

The angle of the third root =

The angle of the fourth root =
Part (C): find all of the fourth roots of this
The first root =

The second root =

The third root =

The fourth root =
Answer:
88.
Step-by-step explanation:
428-360 = 88
Basically, this problem is saying that if you multiply x by 3, then you will get a number that is one less than y. So, if you switch that around a bit, then the problem is saying that if you subtract 3x from y, you'll get 1.
Your final answer should be y - 3x = 1.
Answer:
Hello!!
the point (6, 7) is reflected across the y axis. what are the coordinates of the reflection?
(-6, 7)
Step by Step Explanation:
When reflecting (x, y) over the x axis is (x, -y)
When reflecting (x, y) over the y axis is (-x, y)
Hope this helps!