Mass of KCl= 1.08 g
<h3>Further explanation</h3>
Given
1 g of K₂CO₃
Required
Mass of KCl
Solution
Reaction
K₂CO₃ +2HCl ⇒ 2KCl +H₂O + CO₂
mol of K₂CO₃(MW=138 g/mol) :
= 1 g : 138 g/mol
= 0.00725
From the equation, mol ratio K₂CO₃ : KCl = 1 : 2, so mol KCl :
= 2/1 x mol K₂CO₃
= 2/1 x 0.00725
= 0.0145
Mass of KCl(MW=74.5 g/mol) :
= mol x MW
= 0.0145 x 74.5
= 1.08 g
Answer:
14 moles of oxygen needed to produce 12 moles of H2O.
Explanation:
We are given that balance eqaution

We have to find number of moles of O2 needed to produce 12 moles of H2O.
From given equation
We can see that
6 moles of H2O produced by Oxygen =7 moles
1 mole of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=14 moles
Hence, 14 moles of oxygen needed to produce 12 moles of H2O.
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.
Answer:
The Mole-Volume Relationship: Avogadro's Law. A plot of the effect of temperature on the volume of a gas at constant pressure shows that the volume of a gas is directly proportional to the number of moles of that gas. This is stated as Avogadro's law.
Explanation:
Mass of Na2SO4= 514.18 grams
<h3>Further explanation</h3>
Given
423.67 g of NaCl
Required
mass of Na2SO4
Solution
Reaction
2NaCl + H2SO4 → Na2SO4 + 2HCl
mol NaCl :
= 423.67 g : 58.5 g/mol
= 7.24
From the equation, mol Na2SO4 :
= 1/2 x mol NaCl
= 1/2 x 7.24
= 3.62
Mass Na2SO4 :
= 3.62 mol x 142,04 g/mol
= 514.18 grams