Answer:
a) 3.98 x 10^-10
Explanation:
Hello,
In this case, for the given pH, we can compute the concentration of hydronium by using the following formula:
![pH=-log([H^+])](https://tex.z-dn.net/?f=pH%3D-log%28%5BH%5E%2B%5D%29)
Hence, solving for the concentration of hydronium:
![[H^+]=10^{-pH}=10^{-9.40}\\](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-9.40%7D%5C%5C)
![[H^+]=3.98x10^{-10}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.98x10%5E%7B-10%7DM)
Therefore, answer is a) 3.98 x 10^-10
Best regards.
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
Answer:
Internally reversible is the answer.
Explanation: