1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pachacha [2.7K]
3 years ago
8

Need Answered ASAP

Mathematics
1 answer:
kicyunya [14]3 years ago
6 0

Answer:

The possible rational roots are: +1, -1 ,+3, -3, +9, -9

Step-by-step explanation:

The Rational Root Theorem tells us that the possible rational roots of the polynomial are given by all possible quotients formed by factors of the constant term of the polynomial (usually listed as last when written in standard form), divided by possible factors of the polynomial's leading coefficient. And also that we need to consider both the positive and negative forms of such quotients.

So we start noticing that since the leading term of this polynomial is x^3, the leading coefficient is "1", and therefore the list of factors for this is: +1, -1

On the other hand, the constant term of the polynomial is "9", and therefore its factors to consider are: +1, -1 ,+3, -3, +9, -9

Then the quotient of possible factors of the constant term, divided by possible factor of the leading coefficient gives us:

+1, -1 ,+3, -3, +9, -9

And therefore, this is the list of possible roots of the polynomial.

You might be interested in
LAY
marta [7]

Answer:

A

Step-by-step explanation:

how long is the ball in the air ?

that is the same as asking : after how many seconds will the ball hit the ground (= reach the height of 0) ?

so, that means we need to find the zero solution of h(t).

at what t is h(t) = 0 ?

when at least one of the factors is 0 :

2(-2 - 4t)(2t - 5)

we have 3 factors

2 : can never be 0.

(-2 -4t) : can only be 0 for negative t, which does not make sense in our scenario (we cannot go back in time, only forward).

(2t - 5) : is 0 when 2t = 5 or t = 2.5

so, A is the right answer.

FYI : the starting height (on the hill) is given by t = 0 :

2(-2 - 0)(0 - 5) = 2×-2×-5 = 20 ft

3 0
2 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
I will give brainliest :)
Sergeu [11.5K]

Answer:

The correct answer is B) 102

Step-by-step explanation:


5 0
4 years ago
Read 2 more answers
ABCD=STQR. What is CD?
ololo11 [35]

Answer:

CD = QR because abcd= star then last 2 are answer

8 0
3 years ago
Read 2 more answers
PLEASE HELP!!!!!!! WILL GIVE BRAINLIEST!!!!!!! AND RATING!!!!
wel
The correct answer is:  [A]:  " <span>x - 3 " .
________________________________________________</span>
6 0
4 years ago
Other questions:
  • The most efficient first step in the process to factor the trinomial 4x^3-20x^2+24x
    12·1 answer
  • Turn 129/3930 into decimal
    13·2 answers
  • What is the value of p?
    8·2 answers
  • Name and describe all the angles in the drawing below
    6·2 answers
  • 31y+12y= combine like terms
    6·2 answers
  • -13m = -377<br><br> please solve
    14·1 answer
  • Help Me ASAP PLEASE I NEED IT NOW I WILL GIVE BRAINLIEST
    6·2 answers
  • A 25 ​-pound bag of dog food costs ​$20.25 A35 ​-pound bag of the same dog food costs ​$27.65 Which bag of dog food is the bette
    6·1 answer
  • PLEASE HELP been stuck all day
    8·1 answer
  • What is this 1=-t-5?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!