Answer:
42580 miles
Step-by-step explanation:
Mean = ![\mu = 47500](https://tex.z-dn.net/?f=%5Cmu%20%3D%2047500)
![\sigma = 3000](https://tex.z-dn.net/?f=%5Csigma%20%3D%203000)
The manufacturer does not want to replace more than 5% of the tires
![P(X\leq x)=5\%](https://tex.z-dn.net/?f=P%28X%5Cleq%20x%29%3D5%5C%25)
![P(\frac{x-\mu}{\sigma}\leq \frac{x-47500}{3000})=0.05](https://tex.z-dn.net/?f=P%28%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%20%5Cfrac%7Bx-47500%7D%7B3000%7D%29%3D0.05)
By using normal table values :
![\frac{x-47500}{3000}=-1.64](https://tex.z-dn.net/?f=%5Cfrac%7Bx-47500%7D%7B3000%7D%3D-1.64)
![x=(-1.64 \times 3000)+47500](https://tex.z-dn.net/?f=x%3D%28-1.64%20%5Ctimes%203000%29%2B47500)
![x=42580](https://tex.z-dn.net/?f=x%3D42580)
Hence the approximate number of miles for the warranty is 42580 miles
Answer:
(0,0)
Step-by-step explanation:
Answer:
4(b-6)=b^2
Step-by-step explanation:
The difference would mean that it is subtraction and you multiply that difference by 4 and set it equal to b squared