Answer:
Option A, Boyle's law
Explanation:
The complete question is
Pressure and volume changes at a constant temperature can be calculated using
a. Boyle's law. c. Kelvin's law.
b. Charles's law. d. Dalton's law.
Solution
In Boyle’s law, the gas is assumed to be ideal gas and at constant temperature. With these two conditions fixed, Boyle’s established that volume of gas varies inversely with the absolute pressure.
The basic mathematical representation of this phenomenon is as follows -

OR

Where P is the pressure of ideal gas, V is the volume and k is the constant of proportionality.
Hence, option A is correct
The abiotic community of the ecosystem or the nonliving objects in the earth's biosphere influences the survival, growth and development of the organism. They provide basic mmaterials to support life by the biogeochemical processes which is composed of many biological and environmental cycles which profoundly has factored the intiation and continuation of life on earth. They also provide the basic materials to support life by the undergoing process which is also initiated by the living creatures or the biotic society of the ecosystem.
<span>The answer is transformer. They utilize
electromagnetic induction to generate current. This is only possible in
alternating current due to the differential increase and decrease of electrical
current that induces changes in magnetic flux in the coil. This varies the
magnetic flux of the primary coil that generates current in the secondary coil.</span>
Answer: A.The total number of energy levels the electron can jump to.
Explanation:
Spectral lines are bright or dark lines over continuous spectrum which occur due to emission or absorption of energy.
When an electron jumps to or from one energy level to another energy level, spectral lines are produced. The range of spectral lines depends on the number of energy levels available to which the electron can jump. This depends the amount of energy gained/lost by the electron.
Thus, the correct answer is: A.The total number of energy levels the electron can jump to.