Answer:
<em>1</em><em>)</em><em> </em><em>P</em><em>late</em><em> </em><em>tectonic</em><em> </em><em>theory</em>
<em>2</em><em>)</em><em> </em><em>Lithospheric</em>
<em>3</em><em>)</em><em> </em><em>Plates</em>
<em>4</em><em>)</em><em> </em><em>Heat</em>
<em>5</em><em>)</em><em> </em><em>Less</em><em> </em><em>dense</em>
<em>6</em><em>)</em><em> </em><em>Conventional current</em>
<em>7</em><em>)</em><em> </em><em>Magma</em>
<em>8</em><em>)</em><em> </em><em>Ocean</em><em> </em><em>crust</em>
<em>9</em><em>)</em><em> </em><em>Slowly</em>
<em>10</em><em>)</em><em> </em><em>Drifting</em><em> </em><em>away</em><em> </em>
According to the plot, static friction force has a maximum magnitude of around 3.0 N, and kinetic friction has a magnitude of about 1.5 N.
The plot appears to be telling you the force required to get the yellow block moving along the table. If one applies less than 3.0 N of force, the block remains motionless. But as soon as it starts to slide, one need only apply 1.5 N of force to keep it moving (presumably at a constant speed).
Answer:
7.92 m/s
Explanation:
= Mass of raindrop = 
= Mass of mosquito
= Initial Velocity of raindrop = 8.1 m/s
= Initial Velocity of mosquito = 0 m/s
= Velocity of center of mass
For elastic collision

Hence, the velocity of the attached mosquito, falling immediately afterward is 7.92 m/s
You fallow the steps to figure out the complete answer of the question.
Metals are giant structures of atoms held together by metallic bonds. “Giant” implies that large but variable numbers of Atoms are involved - depending on the size of the bits of metal. most metals are close packed - that is, they fit as many items as possible into the available volume.