Scientists currently monitor underground movements, such as earthquakes and nuclear tests, using seismometers – instruments that measure the motion of those events at the Earth's surface.
Sequence for the movement of electrons during the light dependent reaction
Explanation:
1.These reactions occur within specialised membrane discs within the chloroplast called thylakoids and involve three steps: Excitation of photosystems by light energy. Production of ATP via an electron transport chain. Reduction of NADP+ and the photolysis of water.
2.The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b6f, to another transport protein, plastocyanin (Pc), and back to photosystem
3.Light-dependent reaction. In photosynthesis, the light-dependent reaction uses light energy from the sun to split water (photolysis). ... Water, when broken, makes oxygen, hydrogen, and electrons. These electrons move through structures in chloroplasts and by chemiosmosis, make ATP
4.The two products of the light-dependent reactions of photosystem are ATP and NADPH. The movement of high energy electrons releases the free energy that is needed to produce these molecules. The ATP and NADPH are used in the light-independent reactions to make sugar.
<span>C. to supply hormones
</span>
Answer:
All of the above
Explanation:
ATP synthase is a transmembrane protein enzyme. It harnesses the potential energy –proton motive force- created by the development of a proton gradient across a membrane (could be across the intermembrane space in chloroplast and mitochondria). As the H+ ions 'drain' back and pass through their channels in the protein enzyme, the synthase is able to phosphorylate ADP and Pi to form ATP.
These ATPs (from photophosporylation) in light-dependent phase, are used in the catabolism of glucose, in the light-indepedent phase.
Answer:
The answer is » Both processes produce carbon dioxide.