The distance traveled by the particle at the given time interval is 0.28 m.
<h3>
Position of the particle at time, t = 0</h3>
The position of the particle at the given time is calculated as follows;
x = 2 sin2(t)
y = 2 cos2(t)
x(0) = 2 sin2(0) = 0
y(0) = 2 cos2(0) = 2(1) = 2
<h3>
Position of the particle at time, t = 4</h3>
x = 2 sin2(t)
y = 2 cos2(t)
x(4) = 2 sin2(4) = 0.28
y(4) = 2 cos2(4) = 2(1) = 1.98
<h3>Distance traveled by the particle at the given time interval</h3>
d = √[(x₄ - x₀)² + (y₄ - y₀)²]
d = √[(0.28 - 0)² + (1.98 - 2)²]
d = 0.28 m
Thus, the distance traveled by the particle at the given time interval is 0.28 m.
Learn more about distance here: brainly.com/question/23848540
#SPJ1
C. Three isotopes of the same element because the number of electrons and protons remain the same but the number of neutrons in the nucleus are different. This means that the isotopes have different masses to each other but the same chemical properties.
Answer:
E=252J
Explanation:
The total mechanical energy of an object or system is given by:
E mech=K+U
Where K is the kinetic energy of the object and U is the potential energy of the object. The carriage, sitting motionless at the top of the hill, has only potential energy in the form of gravitational potential energy.
Gravitational potential energy is given by:
Ug=mgh
Where m is the mass of the object, g is the gravitational acceleration constant, and h is the height of the object above some specific reference point, in this case the ground 21 m below.
The weight of a stationary object at the surface of the earth is equal to the force of gravity acting on the object.
W=→Fg=mg
We are given that the carriage weighs 12 N, therefore mg=12N.
Ug=12N⋅21m
⇒Ug=252Nm=252J
Hope it helped, God bless you!
The proper difference between hor Rse and horse is both shows the same thing that is the horse