That was Tycho Brahe, and I thought it was actually more years than that.
Answer:
m³/(kg⋅s²)
Explanation:
Hello.
In this case, since the involved formula is:

By writing a dimensional analysis with the proper algebra handling, we obtain:
![N[=]G*\frac{kg*kg}{m^2}\\ \\kg*\frac{m}{s^2}[=]G *\frac{kg*kg}{m^2}\\\\G[=]\frac{kg*m*m^2}{kg^2*s^2}\\ \\G[=]\frac{m^3}{kg*s^2}](https://tex.z-dn.net/?f=N%5B%3D%5DG%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%20%5C%5Ckg%2A%5Cfrac%7Bm%7D%7Bs%5E2%7D%5B%3D%5DG%20%2A%5Cfrac%7Bkg%2Akg%7D%7Bm%5E2%7D%5C%5C%5C%5CG%5B%3D%5D%5Cfrac%7Bkg%2Am%2Am%5E2%7D%7Bkg%5E2%2As%5E2%7D%5C%5C%20%5C%5CG%5B%3D%5D%5Cfrac%7Bm%5E3%7D%7Bkg%2As%5E2%7D)
Thus, answer is:
m³/(kg⋅s²)
Note that the [=] is used to indicate the units of G.
Best regards
Condensation endothermic or exotérmica
Thus, a swinging pendulum has its greatest kinetic energy and least potential energy in the vertical position, in which its speed is greatest and its height least; it has its least kinetic energy and greatest potential energy at the extremities of its swing, in which its speed is zero and its height is greatest.