Answer:
They're the same.?
Step-by-step explanation:
If they made the same amount on their last game as their first they'd be the same.
Answer:
If we examine a sample of tires used for 60,000 miles and determine the proportion that are worn out, how likely is that proportion to be 3.6% or less?
Step-by-step explanation:
First of all, when you want to contrast two hypothesis you need a confidence level p% without which the comparison makes no sense.
In this case, you want to refuse the null hypothesis (the average is 5%) with an alternative one (the average is less than 5%).
You propose a new average (3.6%) based on the evidence.
You cannot prove that the average is actually 3.6%, <em>but if you somehow determine that the probability the average is greater than 3.6% is lower than 100% minus your confidence level p% ,then you can refute the null hypothesis and accept the alternative one as new average.
</em>
So, from the possible choices, the one that fits the best is
If we examine a sample of tires used for 60,000 miles and determine the proportion that are worn out, how likely is that proportion to be 3.6% or less?
Answer:
a is false
Step-by-step explanation:
a) the interquartile range is not 52
the interquartile range is the 75 percentile subtracted by the 25 percentile
Hence the interquartile range = 49-30
= 19
<em>F</em><em>e</em><em>e</em><em>l</em><em> </em><em>f</em><em>r</em><em>e</em><em>e</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>s</em><em>k</em><em> </em><em>i</em><em>n</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>c</em><em>o</em><em>m</em><em>m</em><em>e</em><em>n</em><em>t</em><em>s</em><em> </em><em>i</em><em>f</em><em> </em><em>y</em><em>o</em><em>u</em><em> </em><em>n</em><em>e</em><em>e</em><em>d</em><em> </em><em>a</em><em>n</em><em>y</em><em> </em><em>e</em><em>x</em><em>p</em><em>l</em><em>a</em><em>n</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>w</em><em>h</em><em>y</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>o</em><em>t</em><em>h</em><em>e</em><em>r</em><em> </em><em>s</em><em>t</em><em>a</em><em>t</em><em>e</em><em>m</em><em>e</em><em>n</em><em>t</em><em>s</em><em> </em><em>a</em><em>r</em><em>e</em><em> </em><em>t</em><em>r</em><em>u</em><em>e</em>
Answer:
<em> f ( x ) = - 2x^2 + 3x + 1</em>
Step-by-step explanation:
If f (x ) extends to → − ∞, as x→ − ∞ , provided f(x) → − ∞, as x → +∞, we can rewrite this representation as such;
− ∞ < x < ∞, while y > − ∞
Now the simplest representation of this parabola is f ( x ) = - x^2, provided it is a down - facing parabola;
If we are considering a down - facing parabola, the degree of this trinomial we should create should be even, the LCM being negative. Knowing that we can consider this equation;
<em>Solution; f ( x ) = - 2x^2 + 3x + 1</em>, where the degree is 2, the LCM ⇒ - 2