Answer:
0.0933 moles/Litre
Explanation:
We assume that the number of moles of N- used is equal to the number of moles of Nitrogen containing compounds that are generated due to the fact that the nitrogen containing compound that are produced contain only one nitrogen in each atom. As such, finding the amount of nitrogen used up explains the amount of compound formed. This can be expressed as follows:
Energy cost = 
Given that:
Energy = 100 W for 60 minutes
100 W = 100 J/s
= 100 J/s × (60 × 60) seconds
= 3.6 × 10⁵ J
Let now convert 3.6 × 10⁵ J to eV; we have:
= ( 3.6 × 10⁵ × 6.242 × 10¹⁸ )eV
= 2.247 × 10²⁴ eV
So, number of N-atom used up to form compounds will now be:
= 2.247 × 10²⁴ eV × 
= 1.123 × 10²³ N-atom
To moles; we have:
= 
= 0.186 moles
However, we are expected to leave our answer in concentration (i.e in moles/L)
since we are given 2L
So; 0.186 moles ⇒ 
= 0.0933 moles/Litre
Oxidation is "Increase in oxidation number" as well as loss of electrons.
A rise in oxidation number results from the loss of negative electrons, whereas a reduction in oxidation number results from the gain of electrons. As a consequence, the oxidized element or ion experiences a rise in oxidation number.
As a result of losing electrons in the process, a reactant oxidizes. When a reactant obtains electrons during a reaction, reduction takes place. This frequently happens when acid and metals react.
Therefore, Oxidation is "Increase in oxidation number" as well as loss of electrons.
Hence, the correct answer will be option (e)
To know more about Oxidation
brainly.com/question/16976470
#SPJ4
The base of the garden in the scale drawing is 30 centimeters. (because 10x3 equals to 30)
The height of the garden in the scale drawing is 12 centimeters. (because 4x3 equals to 12)
The length of the patio in the scale drawing is 24 centimeters. (because 8x3 equals to 24)
The width of the patio in the scale drawing is 12 centimeters. (because 4x3 equals to 12)
Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O