<span> the </span>vapor pressure<span> of the liquid at a temperature T</span>2<span> ... Now, </span>it's<span> important to realize that the </span>normal boiling point<span> of a substance is measured at an atmoshperic ... ΔHvap=−ln(</span>134mmHg760mmHg<span> )⋅8.314J mol−1K−1 (1(273.15+</span>0)−1(273.15+40))K−1 ... Give equations that can be used tocalculate<span> the .
Now try it yourself :)</span>
Answer:
i) 0,7 molH20/s
ii)11,2 g O/s
iii)1,4 g H/s
Explanation:
i) To find the molar flow rate of water, we just convert the mass of water to moles of water using its molecular weight(g/mol) and changing to the proper units (lb to grames and hours to seconds):
ii) Now we just consider the oxygen in the water stream (for 1 mole of water there is 1 mole of oxygen):
iii)Just considering the hydrogen in the stream (for 1 mole of water there is 2 moles of hydrogen):
The number of bacteria is given by:
N(t) = N(o) x 2ⁿ
Where N(t) is the number after n hours have passed and N(o) is the original number which is 15.
The number grown in the 12th hour is the difference in the number after the 11th and the 12th hour. Thus:
15 x 2¹² - 15 x 2¹¹
= 30,720 bacteria
Answer:
B. 0.069 %
Explanation:
It should be initially noted in this answer in particular that, the amino acids tryptophan and tyrosine have a very precise 280 nm absorption rate, which allows a direct A280 size of protein concentration. The 280 nm UV absorbance rate is regularly utilized to approximate protein concentration in laboratories due to its simplistic nature, its affordability and also the ease of usage.
kindly check the attached image below for the solution to the above question.