Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer:
= 61.25 g
= 88.75 g
Explanation:
=
= 50 g
⇒
=
= 1.25 (moles)
2NaOH + H2SO4 ⇒ Na2SO4 + 2H2O
2 : 1 : 1 : 2
1.25 (moles)
⇒
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 98 = 61.25 g
= 1.25 × 1 ÷ 2 = 0.625 (moles) ⇒
= 0.625 × 142 = 88.75 g
Answer:
The maximum kinetic energy of electron is = 2.93 ×
Joule
Explanation:
We know that total energy
------------ (1)
Here h = plank's constant = 6.62 ×
J s
c = speed of light = 3 ×
= 261 nm = 261 ×
m
Put all these values in equation (1) we get
E = 7.6 ×
J
We know that
Total energy = Energy to remove an electron + K.E of electron
Energy to remove an electron = 
Energy to remove an electron = 4.67 ×
J
K.E of electron = Total energy - Energy to remove an electron
K.E of electron = 7.6 ×
- 4.67 × 
K.E of electron = 2.93 ×
Joule
Therefore the maximum kinetic energy of electron is = 2.93 ×
Joule
Answer:
violet
Explanation:
Waves with a short wavelength have the most energy. Red waves have a relatively long wavelength (in the 700 nm range), and violet waves are much shorter - roughly half that. Because violet waves have the shortest wavelength of the visible light spectrum, they carry the most energy (google)