At one minute, a persons's heart beats 72 times.
Therefore, in one hour or 60 minutes, a person's heart will beat (60×72) times, i.e., 4320 times
Answer is 4320 times
Covalent bonds form when electrons are shared between two nonmetals.
Answer:
0.6 Ω
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
From Ohm's law,
V = IR
Where:
V => is the voltage
I => is the current
R => R is the resistance
With the above formula, we can obtain the resistance as follow:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
V = IR
12 = 20 × R
Divide both side by 20
R = 12 / 20
R = 0.6 Ω
Thus the resistance is 0.6 Ω
Reacting to produce hydrogen gas is a chemical property
Answer:
- <u>1. Since the temperature of your body is higher than the temperature of the air and of the water, heat will flow from your body to the air and pool.</u>
<u></u>
- <u>2. The pool feels cooler than air because the water can absorb heat energy faster than the air, due to liquids are better conductors than gases.</u>
<u></u>
Explanation:
Heat always flows from warmer substances to colder ones.
The normal body temperature is 98ºF. Therefore, the heat will flow from your body to the air and pool, which are at a lower temperature of 80ºF. In both cases, you will lose thermal energy and the external parts of your body will cool down.
The difference between both cases is in the heat conduction capacity of both air and water.
Liquids (and solids) are better <em>thermal conductors </em>than gases because the conduction of heat occurs as result of the direct contact between the particles of matter: the atoms or molecules in hot matter vibrate faster than their neighbors and transmit them kinetic energy by direct contact.
Therefore, the liquid water in the swimming pool, at the same temperature than the air, will be able to absorb more heat in the same time from the body.
In conclusion, the body will cool down faster in water than in air which is why the pool feels cooler than air.