Answer:
1. 3; 2. 12; 3. 5; 4. 13; 5. 10; 6. 10
Step-by-step explanation:
We can use the distance formula to calculate the lengths of the line segments.
1. A (1,5), B (4,5) (red)
![d = \sqrt{(x_{2} - x_{1}^{2}) + (y_{2} - y_{1})^{2}} = \sqrt{(4 - 1)^{2} + (5 - 5)^{2}}\\= \sqrt{3^{2} + 0^{2}} = \sqrt{9 + 0} = \sqrt{9} = \mathbf{3}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%5E%7B2%7D%29%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%284%20-%201%29%5E%7B2%7D%20%2B%20%285%20-%205%29%5E%7B2%7D%7D%5C%5C%3D%20%5Csqrt%7B3%5E%7B2%7D%20%2B%200%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B9%20%2B%200%7D%20%3D%20%5Csqrt%7B9%7D%20%3D%20%5Cmathbf%7B3%7D)
2. A (2,-5), B (2,7) (blue)
![d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} = \sqrt{(2 - 2)^{2} + (7 - (-5))^{2}}\\= \sqrt{0^{2} + 12^{2}} = \sqrt{0 + 144} = \sqrt{144} = \mathbf{12}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%282%20-%202%29%5E%7B2%7D%20%2B%20%287%20-%20%28-5%29%29%5E%7B2%7D%7D%5C%5C%3D%20%5Csqrt%7B0%5E%7B2%7D%20%2B%2012%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B0%20%2B%20144%7D%20%3D%20%5Csqrt%7B144%7D%20%3D%20%5Cmathbf%7B12%7D)
3. A (3,1), B (-1,4 ) (green)
![d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} = \sqrt{(-1 - 3)^{2} + (4 - 1)^{2}}\\= \sqrt{(-4)^{2} + 3^{2}} = \sqrt{16 + 9} = \sqrt{25} = \mathbf{5}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%28-1%20-%203%29%5E%7B2%7D%20%2B%20%284%20-%201%29%5E%7B2%7D%7D%5C%5C%3D%20%5Csqrt%7B%28-4%29%5E%7B2%7D%20%2B%203%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B16%20%2B%209%7D%20%3D%20%5Csqrt%7B25%7D%20%3D%20%5Cmathbf%7B5%7D)
4. A (-2,-5), B (3,7) (orange)
![d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} = \sqrt{(3 - (-2))^{2} + (7 - (-5))^{2}}\\= \sqrt{5^{2} + 12^{2}} = \sqrt{25 + 144} = \sqrt{169} = \mathbf{13}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%283%20-%20%28-2%29%29%5E%7B2%7D%20%2B%20%287%20-%20%28-5%29%29%5E%7B2%7D%7D%5C%5C%3D%20%5Csqrt%7B5%5E%7B2%7D%20%2B%2012%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B25%20%2B%20144%7D%20%3D%20%5Csqrt%7B169%7D%20%3D%20%5Cmathbf%7B13%7D)
5. A (5,4), B (-3,-2) (purple)
![d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} = \sqrt{(-3 - 5)^{2} + (-2 - 4)^{2}}\\= \sqrt{(-8)^{2} + (-6)^{2}} = \sqrt{64 + 36} = \sqrt{100} = \mathbf{10}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%28-3%20-%205%29%5E%7B2%7D%20%2B%20%28-2%20-%204%29%5E%7B2%7D%7D%5C%5C%3D%20%5Csqrt%7B%28-8%29%5E%7B2%7D%20%2B%20%28-6%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B64%20%2B%2036%7D%20%3D%20%5Csqrt%7B100%7D%20%3D%20%5Cmathbf%7B10%7D)
6. A (1,-8), B (-5,0) (black)
![d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} = \sqrt{(-5 - 1)^{2} + (0 - (-8))^{2}}\\-= \sqrt{(-6)^{2} + (-8)^{2}} = \sqrt{36 + 64} = \sqrt{100} = \mathbf{10}](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_%7B2%7D%20-%20x_%7B1%7D%29%5E%7B2%7D%20%2B%20%28y_%7B2%7D%20-%20y_%7B1%7D%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B%28-5%20-%201%29%5E%7B2%7D%20%2B%20%280%20-%20%28-8%29%29%5E%7B2%7D%7D%5C%5C-%3D%20%5Csqrt%7B%28-6%29%5E%7B2%7D%20%2B%20%28-8%29%5E%7B2%7D%7D%20%3D%20%5Csqrt%7B36%20%2B%2064%7D%20%3D%20%5Csqrt%7B100%7D%20%3D%20%5Cmathbf%7B10%7D)