You just need to replace x with 5 in each function
.5^5 - 11
-5-3
.5 ^-6
-8
64 - 8 = 56 A Celcius
Hope this helps
The wavelength emitted is indirectly proportional to the difference in the change in the energy level. For the wavelength 278 nm the change in energy level is significantly high. Further change in energy level is indicated by 454nm light but the difference in energy level for this wavelength to be emitted is not greater than the previous one. There is a possibility that these subsystems have now very low energy which should result in wavelengths ranging from 700 to 900 nm. There is another possibility that there is some metastable subsystems in the system which may cause LASER emission.
Answer:
d = 1700 meters
Explanation:
During a rainy day, as a result of colliding clouds an observer saw lighting and a heard thunder sound. The time between seeing the lighting and hearing the sound was 5 second, t = 5 seconds
Speed of sound, v = 340 m/s (say)
Let d is the distance of the colliding cloud from the observer. The distance covered by the object. It is given by :

d = 1700 meters
So, the distance of the colliding cloud from the observer is 1700 meters. Hence, this is the required solution.
<h2>
Answer: 136.363 m</h2>
Explanation:
We can find the wavelength of the radiation produced by the microwave oven by using the following given equation:
(1)
Clearing
:
(2)
Knowing 
(3)
This is the wavelength of the radiation produced by the microwave
Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>