Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
Answer:
0.52 L.
Explanation:
Let P be the initial pressure.
From the question given above, the following data were obtained:
Initial pressure (P1) = P
Initial volume (V1) = 1.04 L
Final pressure (P2) = double the initial pressure = 2P
Final volume (V2) =?
The new volume (V2) of the gas can be obtained by using the the Boyle's law equation as shown below:
P1V1 = P2V2
P × 1.04 = 2P × V2
1.04P = 2P × V2
Divide both side by 2P
V2 = 1.04P /2P
V2 = 0.52 L
Thus, the new volume of the gas is 0.52 L.
Measure the brightness of a star through two filters and compare the ratio of red to blue light.
Answer:
The law of conservation of mass states that in a closed system, mass is neither created nor destroyed during a chemical or physical reaction. The law of conservation of mass is applied whenever you balance a chemical equation.
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
It is applicable in a chemical when the the mass of the products in a chemical reaction is equal to the mass of the reactants.
But it is not applicable in a nuclear fusion as some of the mass is generated as energy.