Answer: at higher temperatures.
Justification:
1) Soda have CO₂ dissolved. Carbonation consists on that: dissolving CO₂ into water, leading to carbonated water.
2) The solution of a gas into a liquid is inversely related to the temperature: the lower the temperature the more gas gets dissolved.
So, in the manufacturing of soda, the CO₂ is added in cool water in a cool environment.
3) So, the higher the temperature after the soda is delivered, the more gas will be liberated when you open the can.
The molecular weight of water is <span>18.01528 g/mol.
So in 2.92 grams there are 2.92/</span>18.01528 = 0.1621 mol of particles.
1 mol contains 6,02214 × 10^<span>23 particles by definition.
So the nr of H2O molecules is </span>0.1621 * 6,02214 × 10^23 = 0,9761 × 10^23.
Every molecule has 2 H atoms, so you have to double that.
2* 0,9761 × 10^23 = 1.952 × 10^23.
Answer:
Explanation:
Num of molecules = num of moles * Avogadro's constant (6.02* 10^23)
But num of moles = reacting mass / molar mass
Molar mass of H20= 2*1 + 16 = 2+16 = 18g
Reacting mass of H20 = 0.55g
Therefore, num of moles of H20 = 0.55g/18g = 0.031 moles
Therefore, num of molecules of H20 = 0.031 * 6.02*10^23
= 1.87*10^22 molecules of H20
Answer:
91kj/mol;no
Explanation:
Took this before I gotchu.