Answer:
Therefore If you exchange $522 for euros, then we will get
Step-by-step explanation:
mark me brainliest!!
The first step to solving this problem is Multiplying In(x-1).
Answer:
23rd term of the arithmetic sequence is 118.
Step-by-step explanation:
In this question we have been given first term a1 = 8 and 9th term a9 = 48
we have to find the 23rd term of this arithmetic sequence.
Since in an arithmetic sequence

here a = first term
n = number of term
d = common difference
since 9th term a9 = 48
48 = 8 + (9-1)d
8d = 48 - 8 = 40
d = 40/8 = 5
Now 
= 8 + (23 -1)5 = 8 + 22×5 = 8 + 110 = 118
Therefore 23rd term of the sequence is 118.
A proportional graph is a straight line that goes through the origin while a non-proportional graph is a straight line that doesn't go through the origin.
y = mx + b
the b represents the y-intercept, so -3 is the y-intercept in the equation y = 3x -3
therefore, the line doesn't go through the origin and is a non-proportional equation
Answer:
The circulation of the field f(x) over curve C is Zero
Step-by-step explanation:
The function
and curve C is ellipse of equation

Theory: Stokes Theorem is given by:

Where, Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Also, f(x) = (F1,F2,F3)

Using Stokes Theorem,
Surface is given by g(x) = 
Therefore, tex]\hat{N} = grad(g(x))[/tex]


Now, 
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\x^{2}&4x&z^{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5Cx%5E%7B2%7D%264x%26z%5E%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = (0,0,4)
Putting all values in Stokes Theorem,



I=0
Thus, The circulation of the field f(x) over curve C is Zero