Notice the picture below
negative angles, are just angles that go "clockwise", namely, the same direction a clock hands move hmmm so.... and one revolution is just 2π
now, you can have angles bigger than 2π of course, by simply keep going around, so, if you go around 3 times on the circle, say "counter-clockwise", or from right-to-left, counter as a clock goes, 3 times or 3 revolutions will give you an angle of 6π, because 2π+2π+2π is 6π
now... say... you have this angle here... let us find another that lands on that same spot
by simply just add 2π to it :)

now, that's a positive one
and

to get more, just keep on subtracting or adding 2π
(cube root of 5) * sqrt(5)
--------------------------------- = ?
(cube root of 5^5)
This becomes easier if we switch to fractional exponents:
5^(1/3) * 5^(1/2) 5^(1/3 + 1/2) 5^(5/6)
------------------------ = --------------------- = ------------- = 5^[5/6 - 5/3]
[ 5^5 ]^(1/3) 5^(5/3) 5^(5/3)
Note that 5/6 - 5/3 = 5/6 - 10/6 = -5/6.
1
Thus, 5^[5/6 - 5/3] = 5^(-5/6) = --------------
5^(5/6)
That's the correct answer. But if you want to remove the fractional exponent from the denominator, do this:
1 5^(1/6) 5^(1/6)
---------- * ------------- = -------------- (ANSWER)
5^(5/6) 5^(1/6) 5
Answer:
(27.3692 ; 44.6308)
Step-by-step explanation:
Mean, xbar = 36
Standard deviation, s = 11
Sample size, n = 12
Tcritical at 0.2, df = 12 - 1 = 11 ; Tcritical = 2.718
Confidence interval :
Xbar ± Margin of error
Margin of Error = Tcritical * s/sqrt(n)
Margin of Error = 2.718 * 11/sqrt(12) = 8.6308
Confidence interval :
Lower boundary : 36 - 8.6308 = 27.3692
Upper boundary : 36 + 8.6308 = 44.6308
(27.3692 ; 44.6308)
Answer:
24
−
c
12
=
−
89
=
c
=
−
1356
x
=
c
=
−
1356
Step-by-step explanation:
The y-int is (0, 0.4) and the x-int is (0.3,0).