Observation : a piece of info we all gather through our 5 senses
Hypotheses: a testable explanation for an observation
Data: info that scientists gather during an experiment
Experiment: a procedure that is designed to test a hypothesis
Conclusion a judgment or decision
Scientific method a series of steps
Answer:-
2747.7 Cal mol -1
Explanation:-
Molar heat of Fusion is defined as the amount of heat necessary to melt (or freeze) 1 mole of a substance at its melting point.
Atomic mass of Iron = 55.845 g mol-1
Mass of Iron = 200 g
Number of moles of Iron = 200 g / (55.845 g mol-)
= 3.581 moles
Heat released = 9840 Cal
Molar heat of Fusion = Heat released / Number of moles
= 9840 Cal / 3.581 moles
= 2747.7 Cal mol -1
Answer:
0.22 mol HClO, 0.11mol HBr.
0.25mol NH₄Cl, 0.12 mol HCl
Explanation:
A buffer is defined as a mixture in solution between weak acid and its conjugate base or vice versa.
Potassium hypochlorite (KClO) could be seen as conjugate base of HClO (Weak acid). That means the addition of <em>0.22 mol HClO </em>will convert the solution in a buffer. HBr reacts with KClO producing HClO, thus, <em>0.11mol HBr</em> will, also, convert the solution in a buffer. 0.23 mol HBr will react completely with KClO and in the solution you will have only HClO, no a buffering system.
Ammonia (NH₃) is a weak base and its conjugate base is NH₄⁺. That means the addition of <em>0.25mol NH₄Cl</em> will convert the solution in a buffer. Also, NH₃ reacts with HCl producing NH₄⁺. Thus, addition of<em> 0.12 mol HCl</em> will produce NH₄⁺. 0.25mol HCl consume all NH₃.
The answer is B I hope this helps you
Answer: The mass of blue copper sulfate is 3.5 g
Explanation:
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The chemical equation for the heating of copper sulfate crystals is:
Let the mass of blue copper sulfate be 'x' grams
We are given:
Mass of copper sulfate powder = 2.1 grams
Mass of water = 1.4 grams
Total mass on reactant side = x
Total mass on product side = (2.1 + 1.4) g
So, by applying law of conservation of mass, we get:
Hence, the mass of blue copper sulfate is 3.5 grams