Answer:
1.3 × 10⁻¹¹ M
Explanation:
We are going to do 4 successive dilutions. In each dilution, we will apply the dilution rule.
C₁.V₁=C₂.V₂
where,
C₁ and V₁ are concentration and volume of the initial state
C₂ and V₂ are concentration and volume of the final state
<u>First dilution</u>
C₁ = 3.1 × 10⁻⁵ M V₁ = 1.00 mL C₂ = ? V₂ = 40.00mL

<u>Second dilution</u>
C₁ = 7.8 × 10⁻⁷ M V₁ = 1.00 mL C₂ = ? V₂ = 40.00mL

<u>Third dilution</u>
C₁ = 2.0 × 10⁻⁸ M V₁ = 1.00 mL C₂ = ? V₂ = 40.00mL

<u>Fourth dilution</u>
C₁ = 5.0 × 10⁻¹⁰ M V₁ = 1.00 mL C₂ = ? V₂ = 40.00mL

X-rays differ from the light source readout in terms of the intensity and the possible damage that can be obtained from the two radiation types. The light source readout is more damaging than the X-rays readout in the gizmo. Therefore, precaution is required when handling the light source readout in the gizmo.
Answer:
19.9 mol
Explanation:
Use <em>Avogadro’s number</em> to convert formula units of CaI₂ to moles of CaI₂.
1 mol CaI₂ ≡ 6.022 × 10²³ formula units CaI₂
Moles of CaI₂ = 1.20 × 10²⁵ × (1 /6.022 × 10²³)
Moles of CaI₂ = 19.9 mol
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
Answer:
B. hydrochloric acid and lithium hydroxide
Explanation: