To calculate the ideal mechanical advantage for an inclined plane, divide th length of the incline by the height of the incline.
Therefore; IMA = L/h
L= 3.0 m, while h =1.0 m
IMA = 3/1
= 3
Therefore the IMA of the ramp is 3
This means the ramp increases the force that is being exerted by 3 times.
Answer:
When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and viewer. Unlike other forms of social video, you’ll get more views and engagement if your video
is longer and repeats key points.
Explanation:
When broadcasting live on social media, one should be live for long because in this way one can get more views as audience will increase with time. There should be an interaction with the audience like answering their questions which they write in the comments section. These comments and views will make this video to the top of news feed. Secondly the most important thing is the content of the video. One must focus on the information or knowledge he/she wants to convey and must repeat the key points again and again so that one who has missed the important points will be able catch them later.
<h2>
Answer:Radiation-3,Conduction-1,Convection-2</h2>
Explanation:
Radiation is the transfer of heat through electromagnetic waves.
These waves do not require any medium.This is the way we get heat from sun.Radiation is the quickest mode to transfer of heat.
Conduction is the transfer of heat through collisions of atomic particles.
This phenomenon largely occurs in solids like metals.The neighbour atoms sets the atoms into random motion thereby raising the temperature.
Convection is the transfer of heat through actual movement of medium particle.
This phenomenon occurs in gases an liquids.The medium particles actually traverse through the space transferring the heat.
Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s
<span>(a) 12.02 m/s
(b) 52.2 meters
This problem is an example of integral calculus. You've been given an acceleration vector which is usually known as the 2nd derivative. From that you need to calculate the velocity function (1st derivative) and position (actual function) by successively calculating the anti-derivative. So:
A(t) = 6.30 - 2.20t
V(t) = 6.30t - 1.10t^2 + C
We now have a velocity function, but need to determine C. Since we've been given the velocity at t = 0, that's fairly trivial.
V(t) = 6.30t - 1.10t^2 + C
3 = 6.30*0 - 1.10*0^2 + C
3 = 0 + 0 + C
3 = C
So the entire velocity function is:
V(t) = 6.30t - 1.10t^2 + 3
V(t) = -1.10t^2 + 6.30t + 3
Now for the location function which is the anti-derivative of the velocity function.
V(t) = -1.10t^2 + 6.30t + 3
L(t) = -0.366666667t^3 + 3.15t^2 + 3t + C
Now we need to calculate C. And once again, we've been given the location for t = 0, so
L(t) = -0.366666667t^3 + 3.15t^2 + 3t + C
7.3 = -0.366666667*0^3 + 3.15*0^2 + 3*0 + C
7.3 = 0 + 0 + 0 + C
7.3 = C
L(t) = -0.366666667t^3 + 3.15t^2 + 3t + 7.3
Now that we have the functions, they are:
A(t) = 6.30 - 2.20t
V(t) = -1.10t^2 + 6.30t + 3
L(t) = -0.366666667t^3 + 3.15t^2 + 3t + 7.3
let's answer the questions.
(a) What is the maximum speed achieved by the cyclist?
This can only happen at those points that meet either of the following criteria.
1. The derivative is undefined for the point.
2. The value of the derivative is 0 for the point.
As it turns out, the 1st derivative of the velocity function is the acceleration function which we have. So
A(t) = 6.30 - 2.20t
0 = 6.30 - 2.20t
2.20t = 6.30
t = 2.863636364
So one of V(0), V(2.863636364), or V(6) will be the maximum value. Therefore:
V(0) = 3
V(2.863636364) = 12.0204545454545
V(6) = 1.2
So the maximum speed achieved is 12.02 m/s
(b) Total distance traveled?
L(0) = 7.3
L(6) = 59.5
Distance traveled = 59.5 m - 7.3 m = 52.2 meters</span>