Answer:
Coordinates of point B are (10,-4)
Coordinates of point D are (3.6,-0.4)
Step-by-step explanation:
1) Point C(3.6, -0.4) divides in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are ____
Let the coordinates of B be ![(x_2,y_2)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29)
Coordinates of A =![(x_1,y_1)=(-6,5)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%3D%28-6%2C5%29)
Coordinates of C=(x,y)=(3.6,-0.4)
We will use section formula over here
![x=\frac{mx_2+nx_1}{m+n} , y = \frac{my_2+ny_1}{m+n}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%20%2C%20y%20%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D)
m:n=3:2
![3.6=\frac{3x_2+2(-6)}{3+2} , -0.4=\frac{3y_2+2(5)}{3+2}3.6 \times 5 = 3x_2-12, -0.4 \times 5 = 3y_2+10\\18+12=3x_2 , -2=3y_2+10\\30=3x_2 , -12=3y_2\\10=x_2, -4=y_2\\](https://tex.z-dn.net/?f=3.6%3D%5Cfrac%7B3x_2%2B2%28-6%29%7D%7B3%2B2%7D%20%2C%20-0.4%3D%5Cfrac%7B3y_2%2B2%285%29%7D%7B3%2B2%7D3.6%20%5Ctimes%205%20%3D%203x_2-12%2C%20-0.4%20%5Ctimes%205%20%3D%203y_2%2B10%5C%5C18%2B12%3D3x_2%20%2C%20-2%3D3y_2%2B10%5C%5C30%3D3x_2%20%2C%20-12%3D3y_2%5C%5C10%3Dx_2%2C%20-4%3Dy_2%5C%5C)
Coordinates of B = (10,-4)
2)If point D divides in the ratio 4 : 5, the coordinates of point D are ____
(fraction)
Let the coordinates of D be ![(x,y)](https://tex.z-dn.net/?f=%28x%2Cy%29)
Coordinates of A =![(x_1,y_1)=(-6,5)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%3D%28-6%2C5%29)
Coordinates of B=![(x_2,y_2)=(10,-4)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29%3D%2810%2C-4%29)
We will use section formula over here
![x=\frac{mx_2+nx_1}{m+n} , y = \frac{my_2+ny_1}{m+n}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%20%2C%20y%20%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D)
m:n=3:2
![x=\frac{3(10)+2(-6)}{3+2} , y=\frac{3(-4)+2(5)}{3+2}\\x=3.6,y=-0.4](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%2810%29%2B2%28-6%29%7D%7B3%2B2%7D%20%2C%20y%3D%5Cfrac%7B3%28-4%29%2B2%285%29%7D%7B3%2B2%7D%5C%5Cx%3D3.6%2Cy%3D-0.4)
Coordinates of point B are (10,-4)
Coordinates of point D are (3.6,-0.4)