1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
13

Please help me find the inverse

Mathematics
1 answer:
sergij07 [2.7K]3 years ago
5 0

f^{-1}(x) is supposed to be a function such that

f^{-1}(f(x))=x

In this case, we need

f^{-1}(\sqrt[3]{x-2})=x

To recover x from \sqrt[3]{x-2}, we would first need to raise \sqrt[3]{x-2} to the third power:

(\sqrt[3]{x-2})^3=x-2

Then add 2:

(x-2)+2=x

To recap, we carried out

f^{-1}(\sqrt[3]{x-2})=(\sqrt[3]{x-2})^3+2=x

which implies that the inverse function is

f^{-1}(x)=x^3+2

To verify: we should also have that f(f^{-1}(x))=x. We get

f(x^3+2)=\sqrt[3]{(x^3+2)-2}=\sqrt[3]{x^3}=x

You might be interested in
The amount of sales of single scoop ice-cream cones during the summer s(c0 varies directly with the number of customers c. Ten c
Nikolay [14]

Answer:

s(c)= 4.4c

Step-by-step explanation:

7 0
3 years ago
A bag contains 10 white gumballs and 12 orange gumballs.
Fed [463]
10+12=22 \\  \frac{10}{22} 10:22  \\ 10/2=5 \\  22/2=11 \\  \frac{5}{11}  \frac{5}{11} 5:11
4 0
3 years ago
Read 2 more answers
An engineer is planning a new water pipe installation. The circular pipe has a diameter of d=20cm.
Komok [63]
We know that
the area A of the circular cross section of the pipe is
A=pi*r²
D=20 cm------------- > r=D/2=20/2=10 cm
then
A=pi*10²=100*pi cm²

the answer is A=100*pi cm²
6 0
3 years ago
Find the area of the figure to the nearest hundredth.<br> HELP MEH
satela [25.4K]
60? sorry but i think im right but im not sure
4 0
3 years ago
Read 2 more answers
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 ov
Nataly_w [17]

Answer:

A + B + E = 32

Step-by-step explanation:

Given

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Required

Find A +B + E

We have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Using integration by parts

\int {u} \, dv = uv - \int vdu

Where

u = x^2 and dv = e^{-4x}dx

Solve for du (differentiate u)

du = 2x\ dx

Solve for v (integrate dv)

v = -\frac{1}{4}e^{-4x}

So, we have:

\int {u} \, dv = uv - \int vdu

\int\limits {x^2\cdot e^{-4x}} \, dx  = x^2 *-\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} 2xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} - \int -\frac{1}{2}e^{-4x} xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

-----------------------------------------------------------------------

Solving

\int xe^{-4x} dx

Integration by parts

u = x ---- du = dx

dv = e^{-4x}dx ---------- v = -\frac{1}{4}e^{-4x}

So:

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} + \int e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}

So, we have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}]

Open bracket

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} -\frac{x}{8}e^{-4x}  -\frac{1}{8}e^{-4x}

Factor out e^{-4x}

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}

Rewrite as:

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}

Recall that:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}

By comparison:

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

-\frac{1}{8}x = -\frac{1}{64}Bx

-\frac{1}{8} = -\frac{1}{64}E

Solve A, B and C

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

Divide by -x^2

\frac{1}{4} = \frac{1}{64}A

Multiply by 64

64 * \frac{1}{4} = A

A =16

-\frac{1}{8}x = -\frac{1}{64}Bx

Divide by -x

\frac{1}{8} = \frac{1}{64}B

Multiply by 64

64 * \frac{1}{8} = \frac{1}{64}B*64

B = 8

-\frac{1}{8} = -\frac{1}{64}E

Multiply by -64

-64 * -\frac{1}{8} = -\frac{1}{64}E * -64

E = 8

So:

A + B + E = 16 +8+8

A + B + E = 32

4 0
3 years ago
Other questions:
  • Which statement is true about the solutions for the equation 3y + 4 = −2?
    13·2 answers
  • How do I change fractions to decimals?
    10·1 answer
  • What is the least common factor of 27,48, and 66
    12·1 answer
  • What is 45 squared to the 4th power
    15·1 answer
  • The morning temp. In Atlanta, Georgia is 21 1/4 degrees. During the day it warms up 6 2/7 degrees. What is the new temp
    10·1 answer
  • Please help
    9·1 answer
  • Help please! ASAP !!!
    7·1 answer
  • 6.1 Practice Assignment<br> Solve for x and find the measure of ZWZX? please help!
    7·1 answer
  • Four times a first number decreased by a second number is 19. The first number increased by four times the second number is −8.
    11·1 answer
  • The polygon given below is a regular pentagon.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!