Answer:
The p-value would be 0.0939
Step-by-step explanation:
We can set a standard t-test for the Null Hypothesis that ![H_0: 18.2\geq 17](https://tex.z-dn.net/?f=H_0%3A%2018.2%5Cgeq%2017)
The test statistic then takes the form
![t=\frac{18.2-17}{3.9/\sqrt{15}}=1.317](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B18.2-17%7D%7B3.9%2F%5Csqrt%7B15%7D%7D%3D1.317)
with this value we then can calculate the probability that is left to the right of this value
. From theory we know that t follows a standard normal distribution. Then
which is smaller than the p-value set by Breyers of 0.10
Answer:
0.23
Step-by-step explanation:
Using either long division or a calculator, divide 23 by 100; you will get the result 0.23.
Answer:
CE= 17.59
Step-by-step explanation:
Arc Length=central angle/ 360 (circumference)
CE= 112/ 360 (2π9)
CE= 17.59
If there is such a scalar function <em>f</em>, then
![\dfrac{\partial f}{\partial x}=4y^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3D4y%5E2)
![\dfrac{\partial f}{\partial y}=8xy+4e^{4z}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D8xy%2B4e%5E%7B4z%7D)
![\dfrac{\partial f}{\partial z}=16ye^{4z}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%3D16ye%5E%7B4z%7D)
Integrate both sides of the first equation with respect to <em>x</em> :
![f(x,y,z)=4xy^2+g(y,z)](https://tex.z-dn.net/?f=f%28x%2Cy%2Cz%29%3D4xy%5E2%2Bg%28y%2Cz%29)
Differentiate both sides with respect to <em>y</em> :
![\dfrac{\partial f}{\partial y}=8xy+4e^{4z}=8xy+\dfrac{\partial g}{\partial y}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D8xy%2B4e%5E%7B4z%7D%3D8xy%2B%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D)
![\implies\dfrac{\partial g}{\partial y}=4e^{4z}](https://tex.z-dn.net/?f=%5Cimplies%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%3D4e%5E%7B4z%7D)
Integrate both sides with respect to <em>y</em> :
![g(y,z)=4ye^{4z}+h(z)](https://tex.z-dn.net/?f=g%28y%2Cz%29%3D4ye%5E%7B4z%7D%2Bh%28z%29)
Plug this into the equation above with <em>f</em> , then differentiate both sides with respect to <em>z</em> :
![f(x,y,z)=4xy^2+4ye^{4z}+h(z)](https://tex.z-dn.net/?f=f%28x%2Cy%2Cz%29%3D4xy%5E2%2B4ye%5E%7B4z%7D%2Bh%28z%29)
![\dfrac{\partial f}{\partial z}=16ye^{4z}=16ye^{4z}+\dfrac{\mathrm dh}{\mathrm dz}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%3D16ye%5E%7B4z%7D%3D16ye%5E%7B4z%7D%2B%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dz%7D)
![\implies\dfrac{\mathrm dh}{\mathrm dz}=0](https://tex.z-dn.net/?f=%5Cimplies%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dz%7D%3D0)
Integrate both sides with respect to <em>z</em> :
![h(z)=C](https://tex.z-dn.net/?f=h%28z%29%3DC)
So we end up with
![\boxed{f(x,y,z)=4xy^2+4ye^{4z}+C}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%2Cy%2Cz%29%3D4xy%5E2%2B4ye%5E%7B4z%7D%2BC%7D)