(4x+y)+5
20x+5y
20x+5y+0
third term is zero
Answer: (f·g)(x) = -5x³ - 31x² + 62x + 18
(f·g)(-1) = -70
(fog)(x) = 25x² - 130x + 155
(fog)(-1) = 310
<u>Step-by-step explanation:</u>
f(x) = x² + 8x + 2 g(x) = -5x + 9
(f·g)(x) = (x² + 8x + 2)(-5x + 9)
= -5x³ + 9x²
- 40x² + 72x
<u> - 10x + 18</u>
= -5x³ - 31x² + 62x + 18
(f·g)(-1)= -5(-1)³ - 31(-1)² + 62(-1) + 18
= -5(-1) - 31(1) - 62 + 18
= 5 - 31 - 62 + 18
= -70
****************************************************************************************
(fog)(x) = (-5x + 9)² + 8(-5x + 9) + 2
= 25x² - 90x + 81
- 40x + 72
<u> + 2</u>
= 25x² - 130x + 155
(fog)(-1) = 25(-1)² - 130(-1) + 155
= 25 + 130 + 155
= 310
<em>It wasn't clear if you wanted multiplication or composition so I solved both.</em>
wheee
Compute each option
option A: simple interest
simple interest is easy
A=I+P
A=Final amount
I=interest
P=principal (amount initially put in)
and I=PRT
P=principal
R=rate in decimal
T=time in years
so given
P=15000
R=3.2% or 0.032 in deecimal form
T=10
A=I+P
A=PRT+P
A=(15000)(0.032)(10)+15000
A=4800+15000
A=19800
Simple interst pays $19,800 in 10 years
Option B: compound interest
for interest compounded yearly, the formula is

where A=final amount
P=principal
r=rate in decimal form
t=time in years
given
P=15000
r=4.1% or 0.041
t=10


use your calculator
A=22418.0872024
so after 10 years, she will have $22,418.09 in the compounded interest account
in 10 years, the investment in the simple interest account will be worth $19,800 and the investment in the compounded interest account will be worth$22,418.09